Equitable Security: Optimizing Distribution of Nudges and Resources

Elissa M. Redmiles, John P. Dickerson, Krishna Gummadi and Michelle L. Mazurek eredmiles@cs.umd.edu

Presented by Dhruv Kuchhal

How can firms optimize the tradeoff between security nudges and levels of risk and investment for end-users, keeping fairness in mind?

Motivation & Method

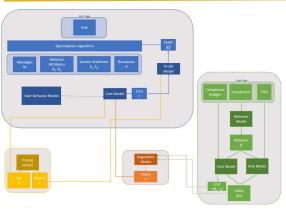
We ran **behavioral economics games on AMT** and were able to model user security decisions with high accuracy (R^2 =0.61).

Users make **boundedly rational cost benefit optimized security decisions** [1]. Yet, sometimes security nudges encourage users toward irrational behavior.

Users have a limited compliance budget. We present a **mechanism design** to mathematically select values of different system features, maximizing utility for both users and online services.

Behavioral Economics Experimental System

Cost is defined as wage-earning time loss


$$C_{2fa} = (T_{signup} + \sum T_{login}) * wage_{mturk}$$

Utility of 2FA is defined the \$\$\$ savings if a hack occurred

$$U_{2fa} = P[(H) * Max_{bank}]$$

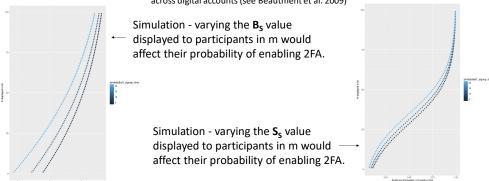
Rational behavior achieved when choice utility > cost

Mechanism Design

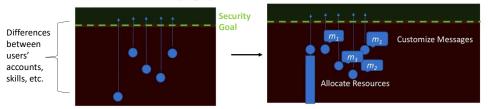
Firm wants to select optimal values for it's parameters in order to maximize profit. Firm can invest money to improve (up to some limits of engineering):

- B_s: security of the protective behaviors (e.g., app based 2FA vs. SMS)
- B_a: quality of behaviors (speed/ease of 2FA)
- S_s: overall security of any account
- S_q: overall quality of accounts (speed/ease of login)

They can also offer, on a per user basis:


- M: messages that might reveal B_s, B_q, S_s, or S_q or are otherwise customized
- R: resources to reduce user costs e.g., ubikeys

Firm's Utility function: $f^s(B_i, u_i)_{i=1...n} = \sum_{i=1}^n g(B_i, u_i) - c(B_i, u_i)$ $f^s: (B, U)^n = \mathbb{R}$


User's Utility function: $f^u: (TYPE, B, R) = g(B_i, t_i, R_i) - c(B_i, t_i, R_i)$ where u_i has some $t_i \in TYPE$

User behavior Adjustment: $if(\sum_{d=0}^{e} budget) < \sum_{t=0}^{e} cost(B_i, U_i) : m_i \times t_i \times r_i$

where budget is the users' overall "compliance budget" across digital accounts (see Beautment et al. 2009)

Firm solves for optimal values of B_{sr} B_{qr} , S_{sr} S_{qr} , and m_i , r_i for some user u_i for max(profit)

Future work: impose fairness constraints, simulate impact on profit & overall user security

- Risk fairness: all people in the system should have as equal as possible risk of a negative outcome
- · Effort fairness: assignment of resources / messages to minimize user variance in cost (effort).

References

[1] Elissa M Redmiles, Michelle L Mazurek, and John P Dickerson. **Dancing Pigs** or Externalities?: Measuring the Rationality of Security Decisions. ACM EC2018.