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The more I read, the more I acquire, the more certain I am that I know nothing.

Voltaire
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SUMMARY

Security and privacy concerns for the Web can manifest in practice due to inadvertent

misconfigurations, or intentionally be considered an acceptable risk to promote better us-

ability or compatibility. Our community needs to monitor when these concerns become re-

alistic threats that erode trust in the ecosystem, so that appropriate defenses can be adopted

to mitigate the threats while minimizing the decline in usability. To take a meaningful next

step towards improving the state of trust and safety for users on the Web, it is imperative

to first bridge the gap between theory and practice by corroborating with evidence the ex-

tent to which such weaknesses exist on the Web today. This dissertation demonstrates how

large-scale empirical studies help uncover such gaps in real-world implementations.

Trust and safety go both ways between users and online platforms. To study the secu-

rity and privacy concerns for platforms, I present measurement techniques to (i) analyze the

practical security provided by passwordless authentication to securely authenticate users

when deployed in the real world, and (ii) evaluate the efficacy of YouTube’s anti-abuse

measures to protect their content from manipulation by malicious actors in terms of organ-

ically produced fake engagement. On the other hand, for users to trust online services with

their data, they too expect a certain level of privacy when online. To that end, my work ex-

plores the privacy implications of (i) local network communications by popular websites,

and (ii) invasive access to a user’s Web activity on popular Android apps.

Through the studies presented in this dissertation, I find that measurement methods,

such as the ones I present, are effective at highlighting the gaps between secure configura-

tions that exist in theory, and real-world implementations which seldom follow best prac-

tices. Across various contexts, I learnt that the gaps exist because Web services optimize

for lower user friction, without taking full cognizance of the risks involved. Ultimately, I

demonstrate that for broader adoption of recommendations made by security practitioners

in theory, our community needs increased operational insights of real-world systems.

xv



CHAPTER 1

INTRODUCTION

The ubiquity and complexity of today’s digital ecosystems underscore the significant role

they play in our personal lives, business operations, and society as a whole. In an era where

data breaches, manipulation of public discourse via social media, and disregard for the pri-

vacy of users have become commonplace, the efficacy of security, privacy, and anti-abuse

measures on the Web demand comprehensive scrutiny. In this pursuit, this dissertation pro-

vides a thorough empirical examination of real-world implementations, with a specific fo-

cus on authentication, online abuse, and Web privacy.

Implementations of real-world systems on the Web are constantly evolving, with new

technologies and protocols emerging regularly, often with a focus on enhancing security

and privacy. However, the adoption of new technologies does not always necessarily fa-

vor the most secure or privacy-respecting behavior, particularly when incentives misalign.

Therefore, it is crucial for practitioners to continually monitor the effective security and

privacy of a system, especially as they consider the development and adoption of next-

generation protocols. The identification and rectification of these vulnerabilities is impor-

tant not just for the intrinsic value of improved security and privacy, but also because they

serve to increase trust within the ecosystem. As individuals, businesses, and governments

become increasingly dependent on digital platforms, the need for mutual trust in the in-

tegrity, security, and privacy between platforms and users becomes ever more critical. With

an aim to inspire improvements in theory and practice, I present empirical perspectives

about concerns spanning both the platforms and users. Considering platforms, I evaluate

real-world implementations of an upcoming authentication protocol and anti-abuse mea-

sures at a major Web service, in chapter 3 and chapter 4 respectively. In chapter 5 and chap-

ter 6, I investigate privacy concerns of users visiting the Web using desktop browsers and

1



non-browser mobile apps.

Theoretical recommendations, while valuable, do not suffice in isolation. Without em-

pirical evaluations of the effectiveness of real-world implementations, we cannot achieve a

complete understanding of the systems’ effectiveness and vulnerabilities, nor can we come

up with the next generation of guidelines. These evaluations are essential for ensuring that

the systems evolve to meet the shifting landscape of threats and challenges, and this thesis

aims to underscore their necessity. Ultimately, this thesis contributes empirical approaches

to bridge the gap between theoretical Web security and privacy concerns and their practical

manifestations, building towards a safer and more trustworthy online ecosystem. Below I

will briefly introduce each of the studies, the technical contributions made by each, and the

unique challenges that they overcome.

1.1 FIDO2-based Passwordless Authentication

Authentication plays a critical role in asserting the user’s identity to Web services and estab-

lishing trust. FIDO2 is a suite of protocols that combines the usability of local authentica-

tion (e.g., biometrics) with the security of public-key cryptography to deliver passwordless

authentication. It eliminates shared authentication secrets (i.e., passwords, which could be

leaked or phished) and provides strong security guarantees assuming the benign behavior

of the client-side protocol components. However, when this assumption does not hold true,

such as in the presence of malware, client authentications pose a risk that FIDO2 deploy-

ments must account for. FIDO2 provides recommendations for deployments to mitigate

such situations. Yet, to date, there has been limited empirical investigation into whether

deployments adopt these mitigations and what risks compromised clients present to real-

world FIDO2 deployments, such as unauthorized account access or registration. In chap-

ter 3, I fill in the gap by: 1) systematizing the threats to FIDO2 deployments when as-

sumptions about the client-side protocol components do not hold, 2) empirically evaluating

the security posture of real-world FIDO2 deployments across the Tranco Top 1K websites,
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considering both the server-side and client-side perspectives, and 3) synthesizing the mit-

igations that the ecosystem can adopt to further strengthen the practical security provided

by FIDO2. Through my investigation, I identify that compromised clients pose a practical

threat to FIDO2 deployments due to weak configurations, and known mitigations exhibit

critical shortcomings and/or minimal adoption. Based on my findings, I also propose di-

rections for the ecosystem to develop additional defenses into their FIDO2 deployments.

1.2 YouTube View Fraud

In addition to secure authentication, anti-abuse measures are crucial for maintaining a trust-

worthy online environment for users. As engagement-driven social media platforms take

center stage in modern discourse, concerns regarding their ability to defend against abuse

are worth investigating. Unfortunately, engagement metrics are often susceptible to ma-

nipulation and expose the platforms to abuse. Video view fraud is a unique class of fake

engagement abuse on video-sharing platforms, such as YouTube, where the view count of

videos is artificially inflated. There exists limited research on such abuse, and prior work

focused on automated or bot-driven approaches. In chapter 4, I explore organic or human-

driven approaches to view fraud, conducting a case study on a long-running YouTube view

fraud campaign operated on a popular free video streaming service, 123Movies. Before

123Movies users are allowed to access a stream on the service, they must watch an unso-

licited YouTube video displayed as a pre-roll advertisement. Due to 123Movies’ popular-

ity, this activity drives large-scale YouTube view fraud. In this study, I reverse-engineer

how 123Movies distributes these YouTube videos as pre-roll advertisements, and track the

YouTube videos involved over a 9-month period. For a subset of these videos, I monitor

the view counts and metrics for their respective YouTube channels over the same period.

My analysis reveals the characteristics of YouTube channels and videos participating in this

view fraud, as well as the efficacy of such view fraud efforts.

3



1.3 Local Network Communication by Popular Websites

Trust between users and online platforms goes both ways. As much as online platforms

need to establish trust in a user’s online identity and engagement, users too expect a cer-

tain level of privacy when online. In chapter 5, I explore privacy implications of local

network communications by popular websites. Modern webpages are amalgamations of

resources requested from various public Internet services. In principle though, webpages

can also request resources from localhost and devices in the LAN, providing a degree of

internal network access to external entities. Prior work has demonstrated how this access

can be used for supporting Web attacks, particularly for profiling and fingerprinting users.

I empirically investigate if and how popular websites are interacting with their visitors’

localhost and LAN resources, and compare the behavior observed to that from known ma-

licious websites. I crawl and monitor the network requests made by the landing pages of

domains in the Tranco top 100K domains as well as ∼145K websites that are known to be

related to malware, phishing, or abuse. For both popular and malicious sites, I find over

100 sites in each category making requests to internal network destinations, including sev-

eral highly-ranked sites. My findings establish empirical grounding on the intentional and

unintentional localhost and LAN network activities of real-world websites.

1.4 Third-Party Web Content in Android Apps

More than 65% Web traffic comes from mobile devices, according to some estimates [1].

Mobile browsers are not the only source for the traffic. Many mobile apps also display Web

content, either by showing a Web page in full-screen as the app itself (i.e., hybrid app), or

by opening Web links from within an app. The WebView class in Android has been a

common way to show Web content in an app, but it has many security and privacy issues,

especially when displaying third-party content. Custom Tabs (CTs), introduced in 2015, are

the recommended alternative to show third-party content safely and efficiently. In chapter 6,
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I present a large-scale empirical study to examine if the top ∼146.5K Android apps use

WebViews and CTs appropriately. I find that ∼55.7% of apps use WebViews, mainly to

display ads, and ∼20% use CTs, primarily to integrate Facebook’s Login SDK. I also find

that popular SDKs, such as Google Firebase have switched to CTs, but some others, such

as Stripe that should switch have not done so yet. Moreover, I semi-manually analyze

the top 1K apps to identify apps which circumvent Android’s default behavior of opening

third-party URLs in a browser. I discover 10 apps that use WebViews to show external

Web pages inside their app. I do a careful manual analysis of these 10 apps using detailed

measurements, and reveal unsolicited manipulation of WebViews to enable behaviors such

as payments, injecting ads and conducting network measurement from end-user devices.

Ultimately, my work takes a first step towards an improved understanding of how mobile

apps display third-party Web content, and its real-world security and privacy implications.
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CHAPTER 2

RELATED WORK

This section describes the prior literature for the different empirical studies presented in

this dissertation.

2.1 FIDO2-based Passwordless Authentication

Since FIDO2’s official launch in 2018, a number of studies have investigated the usability

and security properties of its protocols as a secure replacement for password-based authen-

tication. On the usability side, several works [2, 3, 4, 5] have conducted user studies to

understand how users engage with FIDO2 authentication workflows. Overall, while these

works have identified valuable usability properties complemented by a general willingness

among users to adopt FIDO2, a few works have also identified user concerns and miscon-

ceptions. A common user concern was identified as complexity in account recovery under

FIDO2, which can drive users back to using passwords [4, 5].

On the security side, Barbosa et al. [6] provide a cryptographic security analysis of both

FIDO2’s WebAuthn 1 and CTAP2 protocols, confirming the authentication security of We-

bAuthn. Among the four security notions proposed in [6], CTAP2 was observed to have the

weakest security model. Bindel et al. [7] expanded on this initial analysis to consider We-

bAuthn2 and CTAP 2.1, demonstrating provable security for both protocols. Meanwhile,

Guan et al. [8] and Jacomme and Kremer [9] both applied ProVerif to formally analyze the

assumptions that FIDO2 require for its security properties to hold. Similar to prior efforts,

they confirmed the security properties of FIDO2 under explicit assumptions but identi-

fied that these properties do not necessarily hold with malicious client components. These

works demonstrate FIDO2’s security, but only under the assumptions of FIDO2’s threat

model, which does not consider malicious client components. Indeed, several works [10,
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11] have identified social engineering-based attacks on FIDO that exploit weaknesses not

accounted for by FIDO assumptions.

In my work, I empirically evaluate the consequences of malicious client components.

While prior work demonstrated such a threat to FIDO2 theoretically exists, in my work, I

empirically evaluate how this threat manifests in practice.

2.2 YouTube View Fraud

The YouTube platform has been widely studied over the past decade, from analysis of

user-generated video content [12] to identification of topic-based communities [13]. More

recently, several studies have also detected and characterized various kinds of abuse perme-

ated via YouTube. For example, researchers have investigated the marketing of fraudulent

products and services on YouTube [14, 15].

Most relevant to my study, several prior works have considered the manipulation of

video engagement metrics. Dutta et al. studied collusion networks that deliver fake col-

lusive likes and subscribers to videos and channels, although they did not consider view

fraud [16]. Li et al. investigated a behavior-based clustering approach to detecting auto-

mated fake engagement on YouTube [17]. Miriam et al. evaluated the detection systems

of five online video platforms (including YouTube, Vimeo, and Dailymotion) and found

that YouTube better detected fake views than other platforms [18]. They also observed that

YouTube penalizes its videos’ public view counters after detecting view fraud activity.

However, there has been little empirical investigation into real-world video view fraud

campaigns. What limited work does exist considered detecting and characterizing view

bots on live streaming platforms like Twitch [19]. Thus, my work expands upon the liter-

ature by providing empirical grounding on video view fraud in practice, in particular con-

sidering an organic form of view fraud, rather than the automated view fraud considered in

prior work.
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2.3 Local Network Communication by Popular Websites

Here I summarize the prior work on developing Web-based methods for discovering, fin-

gerprinting, and attacking LAN devices, along with the prior work empirically evaluating

the security and privacy behaviors of websites.

2.3.1 Web-based LAN Attacks

Web-based methods for identifying, profiling, and attacking devices on a user’s LAN have

existed for years. Over a decade ago, Lam et al. [20] demonstrated how a malicious web-

page could scan for and exploit vulnerabilities on LAN devices, potentially propagating

worms and profiling users. Grossman and Niedzialkowski [21] similarly presented a Web-

based method for scanning the local network using the onerror JavaScript handlers of

image resources. Stamm et al. [22] leveraged this scanning method to hijack the DNS

configurations of local routers. More recently, Gallagher [23, 24] refined Web-based LAN

scanning by using WebSockets and Web Workers, and Lee et al. [25] did likewise lever-

aging HTML5 AppCache to identify cross-origin resource statuses. Acar et al. [26] fur-

ther built upon these advancements to demonstrate how a webpage can discover and in-

teract with local IoT devices that expose HTTP interfaces, potentially triggering malicious

commands as well as fingerprinting the network. Beyond these academic studies, several

different Web-based network and port scanners have been developed, demonstrating the

feasibility of Web-based targeting of LAN devices [27, 28, 29, 30, 31, 32, 33].

These works highlight the potential threats that websites could pose if given internal

network access. However, we currently lack awareness of whether websites actually lever-

age this access in practice. My study establishes empirical ground on the localhost and

LAN network behaviors of modern websites.
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2.3.2 Measurements of Website Security and Privacy Behavior

Numerous empirical studies have evaluated the security and privacy behaviors of websites.

Prior work has examined how websites have deployed various security mechanisms. For

example, Felt et al. [34] tracked the deployment and configuration of HTTPS across the

Web. Similarly, Stark et al. [35] evaluated the adoption of certificate transparency on web-

sites. Both Calzavara et al. [36] and Roth et al. [37] examined the content security policies

deployed by websites, evaluating their effectiveness in practice.

On the privacy side, existing studies have analyzed the real-world data collection and

Web tracking mechanisms deployed by websites. As an example, Englehardt et al. [38]

developed an open-source Web privacy measurement tool and used it to measure differ-

ent types of tracking on the top 1 million websites. Similarly, Acar et al. [39] uncovered

how websites were using surreptitious techniques for profiling and tracking users longitu-

dinally, including through canvas fingerprinting, evercookies, and cookie syncing. Snyder

et al. [40] investigated the browser features used by popular websites for advertising and

tracking purposes.

As with these prior studies, my work seeks to understand the security and privacy be-

haviors of websites. Expanding beyond the existing explorations though, I explore how

websites interact with localhost and LAN network services, and the security and privacy

implications of this behavior.

2.4 Third-Party Web Content in Android Apps

While WebView-based mobile apps afford a seamless and enriched user experience with

relatively low development demands, they bear the risk of potential security and privacy

concerns. Apps utilizing WebViews can inject JS code into webpages, enable bidirectional

communication between native Java objects and webpages through JS Bridges, and control

network requests. Over a decade ago, Luo et al. introduced the threat model for WebViews,
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illustrating how they could serve as attack vectors for webpages within malicious apps or

for malicious webpages embedded in benign apps [41]. Since then, numerous static analy-

sis approaches have been proposed to detect data leaks and code injection attacks through

JS Bridges [42, 43, 44]. Additionally, vulnerabilities and bugs introduced by interactions

with the JS Bridge [45, 46, 47] and native app event handlers [48] have been identified.

WebViews have also been manipulated to expand traditional Web-based attacks, such as

phishing [49] and browser fingerprinting [50]. Moreover, malware has been discovered ex-

ploiting the capabilities of WebViews to evade detection [51]. As apps have become more

complex, the threat landscape has also evolved. Recently, Zhang et al. examined how iden-

tity confusion in WebView-based apps can expose privileged APIs of one app component

to an unrelated component [52].

WebViews possess such expansive access rights primarily because they are intended to

present trusted first-party content. However, there’s no restriction that prevents them from

loading third-party content. Tuncay et al. suggested a policy-based strategy, modeled af-

ter the Same-Origin-Policy, which would permit granular control over Web origins within

WebViews [53]. Nevertheless, in practice, Zhang et al. identified instances of inter-party

manipulation of Web resources in WebViews [54]. The majority of these manipulations

served benign purposes like customizing Web services or enabling hybrid functionality.

Yet, there were a handful of malicious instances aimed at stealing cookies or user creden-

tials. It is worth noting here that Zhang et al.’s approach uses static analysis techniques to

generate the URLs passed into the WebView. This means their analysis is constrained to

URLs that already exist in the app in some form prior to its execution. Therefore, their

findings do not extend to In-App Browsers (IABs) implemented with WebViews. In other

words, if a user clicks a third-party link sent by a friend via a social media app and that link

opens in a WebView, this behavior is not included in their study because the URL was not

originally present in the app.

In order to mitigate these risks, Android encourages employing CT for any non-first-
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party or untrusted Web content [55]. Beer et al. recently proposed that the callback mech-

anism of CTs could be exploited as a cross-site oracle [56], but their potential attack would

still have much less impact than the ones demonstrated for WebViews. To date, there has

been limited empirical investigation into the real-world adoption of CT. Zhang et al. stud-

ied IAB implementations in 25 popular apps from a usable security perspective [57]. Their

findings indicate that IABs leveraging CT generally exhibit secure behaviors, whereas ev-

ery single IAB utilizing WebViews presented at least one insecure behavior. Through my

research, I offer an extensive characterization of WebView and CT adoption, drawing from

a large-scale evaluation of popular Android apps. Furthermore, I contribute to a compre-

hensive understanding of privacy invasive behavior within WebView-based IABs found in

a smaller sample of widely used apps.
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CHAPTER 3

SECURITY POSTURE OF REAL-WORLD FIDO2 DEPLOYMENTS

FIDO2 is a second-generation suite of protocols supporting passwordless authentication.

It relies upon public-key cryptography, where the cryptographic keys, their access control,

and cryptographic operations are ideally secured by a hardware-based Trusted Execution

Environment (TEE). For access control to cryptographic keys, FIDO2 relies on the au-

thentication performed locally at the user’s device, supporting methods such as biometrics

(e.g., fingerprint or facial scanning), and local PINs. FIDO2 has been designed and for-

mally verified [7, 6, 8, 9] as providing strong authentication security guarantees (with prior

work also demonstrating promising usability outcomes [2, 3, 4, 5]), all without the use

of any shared authentication secrets (i.e., passwords). FIDO2’s promise has driven real-

world adoption, with support by major browsers (e.g., Chrome, Firefox, Edge, Safari),

OSes (e.g., Windows, Linux, macOS, iOS, Android), and online services (e.g., Microsoft,

Google, Facebook, PayPal, and eBay).

By avoiding shared secrets, FIDO2 directly eliminates the threat of credential phish-

ing and data breaches: two of the primary credential theft vectors [58]. However, mal-

ware remains a notable threat, which has also plagued password authentication for decades

(e.g., keyloggers are often used to steal passwords).

As FIDO2 becomes more prominent, attackers will naturally be incentivized to pri-

oritize this remaining attack surface. The documentation of FIDO2 [59] also recognizes

the threat of malware and thus recommends configurations that help mitigate the impact

of malware. However, to date, there has been limited investigation into whether FIDO2

deployments adopt these mitigations, and what risks compromised clients pose in practice.

FIDO2’s strong security guarantees also have the potential to bias the risk assumptions

made by practitioners, as these guarantees depend fundamentally on the integrity of the lo-
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cal client operations, and may not completely hold if client-side components are malicious,

compromised (as proven by formal analysis of the protocol [8, 9]), or misconfigured. More-

over, FIDO2 does not inherently eliminate the risk of social engineering: in section 3.6.2,

we show that a practical social engineering attack could compromise a sensitive action such

as an online payment transaction. This motivates the need for additional controls alongside

FIDO2 authentication—such as in-browser integrity checks and authenticator attestation—

to adequately secure such interactions.

In this work, we investigate the existing configurations of FIDO2 deployments, the

degree to which they adopt the recommended mitigations, and the extent to which ma-

licious client software and social engineering attacks can impact them. We consider the

case where legitimate clients are compromised, both when the compromise occurs during

FIDO2 registration and when it occurs only during authentication after a legitimate user

has successfully registered.

We cover the background for FIDO2 in section 3.1 and section 2.1, describe our threat

model in section 3.2, and our measurement method in section 3.3. In section 3.4 sec-

tion 3.6, we provide three key contributions across the aforementioned scenarios:

1. We systematize the threats to FIDO2 from malicious client components, expanding

beyond prior work and FIDO2 documentation. As part of our threat characterization,

we identify and disclose a unique social engineering attack and browser vulnerability

through which user-level malware can trick users into authenticating sensitive actions

without their knowledge.

2. Using the FIDO2 documentation, we synthesize the potential mitigations that FIDO2’s

stakeholders can implement to reduce the risk of unauthorized account access posed

by compromised clients and further strengthen FIDO2’s security in practice.

3. We collect a snapshot of FIDO client authentication telemetry from a large financial

service provider, and longitudinal measurements of FIDO Alliance’s own database of
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authenticator metadata, to characterize the available FIDO authenticators. Building

upon our characterization, we analyze the configurations of FIDO2 deployments in

the Tranco Top 1K websites and evaluate their susceptibility to the threats we discuss.

Through our investigation, we find that real-world FIDO2 deployments are broadly not

configured to identify compromised FIDO2 clients, and hence are vulnerable to potential

attacks. For some threats, improved configurations and adopting recommended mitiga-

tions could help secure FIDO2 deployments; for other issues, we identify the lack of or

significant shortcomings with existing mitigations. Grounded in these findings, we iden-

tify long-term directions that various stakeholders of the FIDO2 ecosystem can pursue for

broader impact, as well as immediate measures that FIDO2 deployments can adopt to re-

duce their risk exposure. Ultimately, our study is a first step towards developing defenses

for practical attacks on FIDO2 deployments, which is particularly salient at this time as the

protocol becomes increasingly adopted.

3.1 Background on FIDO2

FIDO2 provides public-key cryptographic protocols for authentication, using client-side

FIDO2 components that interact with an online service supporting FIDO2, called the Rely-

ing Party (RP). At a high level, when a user wishes to authenticate with an RP via FIDO2,

they use the client components to execute a registration protocol with the RP that results

in the generation of a public/private cryptographic key pair (the FIDO2 credentials) that is

stored on the client, where the public key is shared with the RP. This credential is bound to

the specific user and RP, and access control to the private key is maintained by the client

components, permitting key use only upon successful user authentication on the local de-

vice (e.g., via biometrics or a PIN). For subsequent authentication attempts with the RP, the

client components perform a challenge-response cryptographic protocol with the RP, after

locally authenticating the user. In addition to the traditional challenge-response protocol,
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FIDO2 also allows for RPs and clients to build custom functionality through FIDO2 exten-

sions [60], where extension data is linked to and stored securely with the FIDO2 credential.

Client-side components of the family of FIDO protocols consist of the Authenticator,

the Authenticator Specific Module (ASM), and the FIDO client. The Authenticator is the

component that stores the cryptographic key materials and supports cryptographic opera-

tions, while the ASM provides a standardized software interface to the Authenticator. FIDO

clients are the software clients that interact with the Authenticator and user agents during

authentication. There is a wide variety of FIDO authenticator implementations, including

software emulations of physical authenticators that are called virtual authenticators. Vir-

tual authenticators by design do not provide any security guarantees, as they are primarily

designed for testing and development use-cases.

The FIDO Alliance has published three specifications: the deprecated Universal Sec-

ond Factor (U2F), which describes the framework for using FIDO authenticators as a sec-

ond factor [61], Universal Authentication Framework (UAF), which is a framework for

passwordless authentication [62], and the Client to Authenticator Protocols (CTAP), which

specifies how OSes/browsers communicate with a compliant authenticator [63]. CTAP’s

latest version, CTAP2, is complementary to the W3C’s Web Authentication (WebAuthn)

specification, which defines an API for Web applications to use FIDO protocols [64]. We-

bAuthn supports communication by Web applications with both RPs and authenticators,

whereas CTAP2 provides an interface between applications and authenticators. Together,

CTAP2 and WebAuthn are known as FIDO2.

In this study, we focus on the two FIDO2 protocols in the UAF framework, as U2F is

deprecated. However, since FIDO2 is backward compatible with U2F, it can still be used

for multi-factor authentication (MFA), which we consider in scope for our study.

RP security mechanisms: When an authenticator is registered on an RP, it generates

a new key pair (the “FIDO credential”) and transmits the public key and the authentica-

tor’s unique model ID (AAGUID), among other information, to the RP. The authenticator
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signs this output with its attestation private key, which is part of a key pair specific to the

device model burned into the device at the time of manufacturing. The attestation certifi-

cates associated with the attestation keys are also attached with the output, which chain to

a trusted root certificate, conveying the provenance of the authenticator to the RP. This pro-

cess cryptographically proves that a user has a specific model of authenticator when they

register [65].

An RP is responsible for maintaining a FIDO Server that stores the public key creden-

tials of users, and a database of authenticator metadata and trust anchors [59] described as

follows:

• Authenticator metadata can be derived from FIDO Alliance’s Metadata Service (MDS),

which contains standardized information describing the characteristics of an authen-

ticator. RPs can use this information to make interoperability or risk decisions. For

example, it includes an authenticator’s FIDO certification level, which indicates its

attack-resistance [66]. There are five possible certifications, in increasing order of

attack-resistance, namely L1 [67], L1+ [68], L2 [69], L3 [70] and L3+ [71]. In brief,

the authenticators which are resistant to malware and more sophisticated OS, cir-

cuit, or chip-level attacks, owing to the presence of TEEs, qualify for L2 or above

certification, whereas authenticators lacking TEEs qualify for an L1/1+ certification.

The certification is awarded by the FIDO Alliance based on their proprietary secu-

rity evaluation tests. We note here that all authenticators of L2 or higher consist of

hardware-based TEEs, but not all authenticators consisting of hardware-based TEE

are awarded L2 or above.

• Trust anchors can be derived from two primary sources, the MDS as well as known

root CAs. For example, trusted certificate chains for Android’s SafetyNet attestation

can be found in MDS, whereas Apple publishes its own root CA for its devices [72].

After establishing the legitimacy of the authenticator based on trust anchors, the RPs
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can calculate the risk associated with an authenticator based on its security characteristics

and decide whether to allow its registration [59].

At registration, RPs can verifiably ascertain an authenticator’s legitimacy and the

risk associated with it.

Client security mechanisms: FIDO UAF’s design ensures that the FIDO credentials

(i.e., cryptographic keys) can only be accessed by the user associated with the credential

(through local user authentication on the user device), and by the same client application

and ASM that performed the initial registration operation [73]. Conceptually, UAF speci-

fies that when a new credential is generated, authenticators bind the private authentication

key with a key provided by the ASM called the KHAccessToken, which is generated as a

function of the AppID, PersonaID, ASMToken, and CallerID. AppID is an identifier for

a particular user application (e.g., Android application); PersonaID is an identifier gener-

ated by the ASM to differentiate credentials registered on the same RP; ASMToken is a

random ID unique to the ASM; CallerID is an identifier unique to the FIDO Client. KHAc-

cessToken ensures that malware on the client device is unable to access keys previously

registered by a legitimate application [74] (so long as the attacker lacks root OS access, in

which case they can spoof these ID values). FIDO2’s CTAP2 implements the equivalent of

KHAcessToken via an authenticator activation PIN (authenticatorClientPIN) [63, 59].

3.2 Threat Model

Given our focus on understanding the impact of compromised FIDO2 client components,

our threat model is centered on an attacker who is able to infect the client with malware.

Such malware can be delivered remotely and at scale, permitting widespread attacks. This

threat model is realistic as in practice, keyloggers have been widely used to steal user pass-

words [58]. We consider both a weaker threat model of malware with only user-level ac-

cess (e.g., a malicious user application or browser extension) and a stronger threat model of
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malware that achieves elevated root access (such as through exploiting kernel vulnerabili-

ties [75]). For user-level malware, we assume the integrity of OS-level security protections.

We note that a malware-infected client is already in a grave situation, as the attacker

may have remote access to their victim’s active sessions. However, if the attacker is able

to leverage malware to bypass a FIDO2 authentication attempt, this affords significantly

expanded capabilities through circumventing additional defenses (e.g., step-up authentica-

tion). Such capabilities can allow attackers to execute sensitive authentication-protected

actions, such as changing account recovery settings to permanently take over an account

or initiate arbitrary financial transactions (rather than hijacking only ones that a user le-

gitimately initiates). As FIDO2 becomes more popular, attackers will naturally have even

more incentive to exploit it with malware, especially without the ability to rely on phishing

and credential leaks.

Malware on the client is a strong threat model which can already result in significant

harm, including remote access to the user’s active sessions online. However, we focus

on malware that enables an attacker to bypass a FIDO2 authentication attempt,

allowing an attacker to execute any sensitive authentication-protected action.

Our threat model does not include attacks on the FIDO2 protocol itself, which we as-

sume is secure (aligning with prior work [7, 6, 8, 9]). We also assume that authenticators

using TEEs that are certified by the FIDO Alliance at L2 or above provide a secure execu-

tion environment (per the certification criteria), such that cryptographic keys and operations

cannot be leaked or tampered with. However, for authenticators of lower or no security cer-

tifications, we do not make such assumptions (as they have not been certified as providing

such security properties). In addition, we do not investigate attack vectors beyond those of

malicious software on the user device, including network-based attacks (FIDO2 and exist-

ing protocols such as TLS protect against such threats) and attacks directly against the RP

(e.g., DoS attacks). Finally, we do not consider FIDO2 privacy concerns.

18



Prior works have considered similar threat models. For example, Eskandarian et al.

proposed an architecture to run Web applications securely within a compromised browser

and compromised OS [76]. However, the design changes proposed are not practical enough

to implement at scale. On the contrary, FIDO2 is fast gaining adoption as it offers a wide

range of authenticators at different levels of security and interoperability.

3.3 Measurement Method

We begin by discussing how we empirically evaluate real-world FIDO2 deployments, study-

ing the ecosystem through the lens of each of its participants: (i) online services (RPs) in

the Tranco Top 1K which deploy FIDO2, (ii) FIDO Alliance’s MDS which plays a central

role in providing metadata and trust anchors for authenticators, and (iii) authenticators ob-

served on mobile devices in the wild. We describe the various datasets we collect, which

we use to assess the vulnerability of RPs to malware-based threats.

3.3.1 Relying Parties (RPs)

Identifying RPs deploying FIDO2

Evaluating the behavior of RPs requires identifying the websites supporting FIDO2 lo-

gins, creating user accounts on those sites, and registering authenticators (typically in

the account settings) to observe the RP’s FIDO2 configurations. This process is chal-

lenging to fully automate, given the broad diversity in website designs and authentica-

tion workflows. Our initial exploration involved crawling the landing sites of the Tranco

Top 100K domains (using the snapshot of February 26, 2022). We searched the JS re-

sources loaded by each site for the presence of the call made to the Credential Man-

agement API (navigator.credentials.create) to create a WebAuthn credential

(publicKey) [77]. We found the pair of strings present in JS resources loaded by 135

sites, out of which for 82 sites, it was found in enterprise Identity and Access Management

SDKs that the sites had imported [78, 79]. Manual analysis of the remaining revealed that
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barring a few sites (e.g., GitHub), the strings were found in imported JS SDKs without the

WebAuthn functionality being utilized by the site. Moreover, popular sites such as Google

and PayPal, which we knew supported FIDO2 [80, 81], were not detected by this method.

We also attempted automated search engine queries for FIDO2 support on a site, but our

manual analysis often led to false positives, such as documents or posts on a site discussing

FIDO2, despite the site itself not deploying it (e.g., a Q&A page discussing FIDO2 on a

commercial site). Prior work also observed similar issues when investigating MFA based

on security keys [82, 83].

Therefore, we use a manual approach for identifying RPs and creating accounts and

apply a semi-automated approach for assessing RP FIDO2 configurations. Given the sig-

nificant manual effort required, we choose to search for FIDO2 support among the domains

listed in the Tranco Top 1K domains. First, we visit each domain in a browser and manually

inspect the landing page for account creation/login pages. If a site supports public account

creation, we then manually look for evidence of FIDO2 support on either the account cre-

ation pages or through the links on the first page returned by a Google search (using the

query [domain] “webauthn” OR “passwordless” OR “u2f” OR “uaf” OR “fido2” OR

“security key”). We note that for all sites we found supporting FIDO2, the top search

result provided the relevant information on FIDO2 support.

Table 3.1 provides statistics on each stage of this search process. From the initial 1K

domains, we found 585 domains with account login or signup pages (note, some domains

did not host a website and thus did not load). Of these domains, we identified 85 supporting

FIDO2’s WebAuthn, many of which mapped to the same RP (e.g., multiple Microsoft

domains all use the same RP). In total, we aggregated the FIDO2-supporting domains into

40 distinct RPs. However, not all of these RPs support consumer-facing account creation

(e.g., enterprise or financial services), inhibiting our investigation of their configurations.

Ultimately, we could create accounts on and evaluate 29 RPs across the Tranco Top 1K.
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Table 3.1: Measurement Statistics for FIDO2 RPs evaluated.

Measurement Stage #
1. Domains in Tranco Top 1K 1000
2. Domains/sites that load in a browser 841
3. Sites with account login/signup pages 585
4. Sites that support FIDO2 WebAuthn 85
5. Distinct RPs for FIDO2 sites 40
6. Distinct RPs we can evaluate 29

RP-Requested Authenticator Properties

To evaluate the requirements each RP imposes on authenticators registering on their plat-

form, we manually create an account on each RP’s website (arbitrarily choosing one site if

an RP is associated with multiple), initiate authenticator registration, and parse the require-

ments indicated by the RP as part of the authentication challenge request (note here that

we do not need to complete the registration). Specifically, the RP’s client-side script calls

navigator.credentials.create(), passing along data fields indicating the RP’s

criteria for allowed authenticators, the attestation type required, and the extensions sup-

ported [77]. In our manual analysis, we found that the client-side code calling the API was

often obfuscated, inhibiting static analysis. Instead, we used Chrome’s in-built JS debug-

ger [84] to set a breakpoint at the function call, so we could manually inspect the request’s

parameters when we trigger a registration.

Table 3.2 lists the 29 RPs evaluated, the authenticators allowed, and the attestations

required by each RP.

RP Allowlisting of Authenticators

Next, we investigate whether RPs place further restrictions on the authenticators they al-

low on their platforms by allowlisting certain authenticator/AAGUIDs based on metadata

from MDS, as recommended by FIDO to maintain an acceptable level of assurance [59].

To that end, we attempt to manually register a credential on each of the 29 RPs found
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Table 3.2: Authenticator Configurations requested by FIDO2 RPs.

(a) For RPs using FIDO2 for Passwordless Authentication.Evaluating the Security Posture of Real-World FIDO2 Deployments

WebAuthn
Usage

Domain
Rank (↓) RP/Service

RP Authenticator Preferences RP Acceptance of Virtual
Authenticator ConfigurationsAuthenticator

Attachment
Attestation
Requirement

User
Verification USB BLE NFC Internal

Password-
less

26 Microsoft platform direct
✗ ✗

74 PayPal discouraged ✗
✓CTAP2

✗U2F
85 eBay cross-platform required ✓CTAP2 , ✗U2F
128 Mail.ru platform none ✗ ✓CTAP2, ✓U2F

517 BestBuy required ✗
✓CTAP2

✗U2F

MFA

1 Google

cross-platform
direct ✗ ✓U2F , ✗CTAP2

3 Facebook ✗

✓U2F
✓CTAP2

6 Twitter none discouraged
14 Yahoo direct preferred
28 GitHub ✗ none discouraged
32 AWS cross-platform direct preferred ✓U2F, ✓CTAP2 ✗

35 WordPress ✗

✓U2F
✓CTAP2

56 Chaturbate cross-platform ✗ discouraged
67 Dropbox

✗
none preferred80 Cloudflare

151 GoDaddy ✗ discouraged162 Aliyun ✗ direct
192 Shopify platform ✗

202 AoL cross-platform direct preferred277 Zoho
296 Binance

✗321 Roblox
✗ discouraged419 Stripe cross-platform ✓U2F, ✓CTAP2 ✗

490 BofA direct ✓U2F, ✓CTAP2
553 NVIDIA ✗ none required ✗

607 GitLab ✗

discouraged ✓U2F
✓CTAP2

656 Namecheap ✗ direct938 BitBucket cross-platform
984 Norton ✗ none ✗

Table 2: We study the FIDO2 WebAuthn configurations of 29 real-world RPs identified from the Tranco Top 1K (see Table 1).
RPs can choose to implement WebAuthn for passwordless authentication or multi-factor authentication (MFA), and in our dataset, we
identify 5 RPs deploying WebAuthn for passwordless, while the other 24 utilize it for MFA. When enabling FIDO2 WebAuthn for a user,
RPs can declare preferences or requirements about the authenticators they allow (listed under RP Authenticator Preferences). First,
they can specify the allowed modes of authenticator attachment, as an authenticator could be built-in directly into the client devices
(i.e., platform) or could be externally attached/roaming (i.e., cross-platform), such as USB security keys. Note that allowing cross-platform
authenticators also inherently allows platform ones as well. Second, they can indicate the degree of attestation required, ranging from none
(i.e., no attestation requirement), indirect (e.g., attestation certificate suffices without authenticator metadata statement), and direct (i.e., full
attestation of unaltered metadata statement required). Some RPs may opt for reduced attestation information to preserve user privacy. Finally,
the RP can signal whether they require, prefer, or discourage user verification. Note that an ✗ mark denotes that a preference/requirement
was not specified by an RP. For the same set of RPs, we also test whether an RP allows Google Chrome’s virtual authenticator [24] to register
as a legitimate authenticator, using different transports (CTAP and U2F) and protocols (USB, BLE, NFC, and Internal). Here, ✗ indicates
unsuccessful registration with the virtual authenticator under a specific configuration, whereas a ✓ indicates a successful registration.
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Table 2: We study the FIDO2 WebAuthn configurations of 29 real-world RPs identified from the Tranco Top 1K (see Table 1).
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Table 2: We study the FIDO2 WebAuthn configurations of 29 real-world RPs identified from the Tranco Top 1K (see Table 1).
RPs can choose to implement WebAuthn for passwordless authentication or multi-factor authentication (MFA), and in our dataset, we
identify 5 RPs deploying WebAuthn for passwordless, while the other 24 utilize it for MFA. When enabling FIDO2 WebAuthn for a user,
RPs can declare preferences or requirements about the authenticators they allow (listed under RP Authenticator Preferences). First,
they can specify the allowed modes of authenticator attachment, as an authenticator could be built-in directly into the client devices
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authenticators also inherently allows platform ones as well. Second, they can indicate the degree of attestation required, ranging from none
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was not specified by an RP. For the same set of RPs, we also test whether an RP allows Google Chrome’s virtual authenticator [24] to register
as a legitimate authenticator, using different transports (CTAP and U2F) and protocols (USB, BLE, NFC, and Internal). Here, ✗ indicates
unsuccessful registration with the virtual authenticator under a specific configuration, whereas a ✓ indicates a successful registration.

in section 3.3.1, using Chrome’s built-in virtual authenticator [85] under different configu-

rations. While there are other ways to instrument custom authenticators, such as Google’s

OpenSK [86], our goal is to choose an authenticator with the weakest security guaran-

tees. Since Chrome’s virtual authenticator is designed for testing WebAuthn applications,
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it stores the credentials (including private keys) in plaintext and allows one-click export of

sensitive credentials. At registration, it provides an RP with a self-signed certificate issued

by ‘Chromium Authenticator Attestation’. Since it is not registered with the MDS, its attes-

tation does not chain to any trust anchor. Thus, RPs should not allow such an authenticator

to register in practice, as an attacker could easily implement a malicious virtual authentica-

tor, or attack credentials registered via a virtual authenticator if used in real-world settings.

In our experiment, we attempt to register the virtual authenticator under different con-

figurations, including different protocols (CTAP2 or U2F) and transports (USB, BLE, NFC,

or Internal). Whenever the RP required user verification, we enabled user verification in

the virtual authenticator (which does not involve real user verification). In Table 3.2, we

list whether we successfully registered a virtual authenticator under each configuration, for

all RPs.

3.3.2 FIDO Metadata Service (MDS)

Given the central role that the MDS plays in maintaining trust and safety in the FIDO

ecosystem, we conducted over a year long longitudinal study into the operation of the

MDS, from September 16, 2021, to April 13, 2023. We recorded daily snapshots of the

MDS, via their APIv3 [87], as they regularly update it with new entries. Our last snap-

shot listed a total of 160 authenticators, a 90% increase from the first snapshot. Out of

the 160 authenticators, 120 authenticators were certified at Level 1, and only 7 at Level 2;

the remaining are not yet certified. We identified that 117 authenticators support mere user

presence (e.g., pressing a button) as a user verification mode, 64 authenticators support a

local passcode that is collected outside the authenticator boundary, and 58 authenticators

support no user verification at all. Note that an authenticator can support multiple user ver-

ification modes. We further characterize the MDS metadata provided about authenticators

in Table 3.3.
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Table 3.3: Change in FIDO MDS authenticator metadata statistics over time.

Authenticator
Attribute

# authenticators
in MDS snapshot

16 Sept.
2021

13 April
2023

Total # authenticators 84 160
# FIDO2 authenticators 34 98

FIDO
Certification

Not Certified 15 33
Level 1 64 120
Level 2 5 7

UAF
Version

v1.0
(2014) 49 107

v1.1
(2017) 32 47

v1.2
(2020) 3 6

Attestation
Supported

Full 62 135
Self-signed 18 18

Full + Self-signed 2 5
Attestation CA 2 2

Key
Protection

Hardware & Secure Element 38 90
Hardware & Secure Element & Remote Handle 21 27

Hardware 4 17
Software 9 10

Hardware & TEE 8 10
Hardware & Remote Handle 4 6

Transaction
Confirmation

Display

None 66 136
Any 18 21
HW 0 3

Extensions
Supported

None 79 138
hmac-secret 2 19
credProtect 0 5

fido.uaf.android.key attestation 3 3
txAuthSimple 0 2

loc 0 1

User
Verification

Methods

Presence 79 117
Passcode
(external) 10 64

None 8 58
Fingerprint 31 50

Passcode 18 27
Faceprint 9 10
Voiceprint 1 5
Eyeprint 4 5
Patterm 1 3

All 2 2
Handprint 1 2
Location 0 1
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3.3.3 Real-World User Authenticators

While MDS lists available authenticators and their properties, it does not provide any infor-

mation about the distribution of authenticators used in the wild. To gain visibility into real-

world authenticators, we partner with a large financial services RP to collect authenticator

registration telemetry recorded during a FIDO2 passwordless authentication pilot involving

live user traffic. The RP chose to run the pilot only for sessions from mobile browsers, and

therefore the authenticator data we collect is limited to mobile devices. To the best of our

knowledge, our study is the first to study a significant sample of real-world authenticators

found on users’ mobile devices from the lens of a large RP. Prior work conducted a user

study on FIDO2 with 29 participants (with 18 iPhones and 11 Android devices) [2].

Using the RP’s authentication server logs, for all users who were enrolled into pass-

wordless authentication, we extracted the WebAuthn response payloads received from their

authenticator, on two days chosen at random during the pilot. We collected a total of

126,608 payloads on July 20, 2022, and 74,270 payloads on August 23, 2022. We then

parsed the payloads to extract the corresponding attestation data, which provides infor-

mation on the authenticator itself. We call this dataset the bulk WebAuthn data. Due to

technical limitations of the server’s logging mechanism, we could only retrieve the first

4KB of the payload, and some response payloads were truncated and could not be parsed.

We identified that authenticators attested by Android SafetyNet issue WebAuthn responses

with payload exceeding 4KB, so we attribute the responses with truncated payloads as

being SafetyNet-attested. To validate these assumptions about payload truncation, we col-

lected a separate set of WebAuthn response data containing full payloads for 14,616 ses-

sions randomly chosen in the last week of July 2022. We call this dataset the sampled

validation WebAuthn data.

From the 200,878 WebAuthn responses in the entire bulk WebAuthn data, we were able

to parse ∼ 72% of responses as coming from Apple-attested authenticators, ∼ 1% without

any attestation, and 1 self-attested response. About 0.5% of registrations had Apple’s attes-
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tation but also an empty AAGUID – we suspect that these are Apple Passkeys [88], based

on the session HTTP user agents indicating iOS 16 devices and information from Apple

developer forums [89]. For the other responses with Apple’s attestation, the AAGUID was

set to f24a8..., but we note that this AAGUID was not listed in the MDS. The anoma-

lous self-attested authenticator was associated with sessions using an HTTP User Agent

(potentially spoofed) indicating a Chrome browser on a Mac OS X device. As a sanity

check, we verified that the HTTP User Agent for the remaining ∼ 27% truncated responses

did indicate Android devices. We did not observe any other attestations.

Using the sampled validation WebAuthn data, we observed that the responses consisted

of ∼ 72% attested by Apple, ∼ 27% attested by Android SafetyNet, and ∼ 1% with-

out attestation. The stark similarity in the distributions of Apple-attested and unattested

responses between the sampled and the bulk dataset gives us further confidence that the

∼ 27% truncated responses in the bulk dataset should be correctly attributed to Android

SafetyNet attestation.

3.3.4 Ethical Considerations

Our measurements evaluate FIDO2 deployments and their susceptibility to attacks. In con-

ducting our measurements, we only test benign FIDO2 authentication attempts using dif-

ferent configurations on a test account, without inducing a high load on the online services

and without causing any harm to the service or any real users. For identified issues, we

have or are in the process of vulnerability disclosure to the relevant stakeholders in a po-

sition to employ remediations. The partner-RP telemetry we analyzed did not contain any

personally-identifying information.

3.4 Practicality of Malware Threats

FIDO2 assumes a TEE environment for providing its security guarantees and defending

against malware attacks. Here, we analyze our data on authenticator characteristics to
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identify whether this assumption holds true in practice for available authenticators and to

determine whether malicious client components pose a realistic threat to FIDO2.

Using the latest snapshot of MDS (from section 3.3.2), we find that only 7 out of 160

(4%) authenticators have L2 certification, which the FIDO Alliance has defined as offering

malware resistance (with no authenticators certified at a higher level). As noted in sec-

tion 3.1, it is possible though for an authenticator to have secure hardware but still not

be certified as malware-resistant (L2). To determine an upper bound on the population of

such authenticators, we analyzed the distribution of authenticators by the security proper-

ties of their keystores. We find that ∼ 93% of authenticators are listed as backed by either

TEE, hardware, or secure element keystores, while the remaining ∼ 7% authenticators are

backed by software-only keystores. Therefore, at least the ∼ 7% authenticators are likely

vulnerable to malware, while the others may provide some malware resistance, based on

other properties such as mode of attachment.

96% of authenticators available today did not receive FIDO Alliance’s malware-

resistance certification, and thus are potentially vulnerable to malware-based attacks.

Beyond considering the distinct authenticators available, we also evaluate hardware-

backed authenticators in our real-world user authenticator data from section 3.3.3 (recall

though that our client authenticator data is strictly from mobile clients of our partner RP).

Specifically, for authenticators attested by Android’s SafetyNet, the attestation information

contains a field labeled evaluationType which indicates whether SafetyNet’s device

integrity evaluation is based on hardware-backed security features (evaluationType=

HARDWARE BACKED). We found that ∼94% of attestations in the SafetyNet WebAuthn

sample were hardware-backed, indicating that a non-trivial minority of authenticators lack

hardware support.

Furthermore, for hardware-backed SafetyNet attestations, ∼0.25% indicated compro-

mise (SafetyNet’s device integrity check failed) and ∼13% of the non-hardware-backed
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SafetyNet attestation indicated compromise. For the devices that were detected as being

compromised, SafetyNet further specified that ∼49% were detected having an unlocked

bootloader, ∼10% a custom ROM, and ∼5% having both. Due to the sensitivity of cus-

tomer data, our insights from this data are limited to aggregate statistics, however, our

partner RP did indicate that they flagged evidence of suspicious scripted activity for the

sessions from these compromised devices. They noted a distinctly high volume of logins

on multiple accounts from these devices, many using proxy IP addresses. Thus, we ob-

serve that FIDO2’s assumption of hardware-backed security does not hold for many

authenticators, and we already find evidence of malicious activity on compromised

devices.

3.5 Registration-Phase Attacks

As FIDO2 gains adoption, it is important to consider the threats when an authenticator

is first registered, as this authenticator would be trusted for subsequent login attempts to

the account. In this section, we expand upon existing FIDO2 documentation [59, 90, 64]

to systematize realistic threats to FIDO2 deployments involving malicious authenticator

registration. We consider two attack scenarios, malicious authenticators that are registered

to a legitimate user’s account, and a legitimate but vulnerable authenticator registered to

the user’s account which may be subsequently compromised. For each threat, we discuss

what mitigation actions could be taken, and then empirically evaluate the extent to which

such mitigations can or have been adopted by real-world FIDO2 deployments.

3.5.1 Malicious Authenticator

Here we consider the threats where the attacker aims to register their malicious (i.e., attacker-

controlled) authenticator to a user’s account. This allows the attacker to authenticate into

the account at will, effectively taking over the account. To gain access to a user’s account,

the attacker could either utilize existing account takeover techniques to gain access them-
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selves, or they could deploy malware to the user’s device which already has the access

required.

Traditional Account Takeover

Attack Description: An attacker can exploit non-FIDO2 credentials, such as passwords

(e.g., via phishing), to take over an account and register a malicious authenticator. Pre-

hijacking attacks (e.g., Sudhodanan et al. [91]) could also be leveraged to register a mali-

cious authenticator and gain persistent access to a user’s account.

Measurement of Mitigation Adoption: Given the importance of initial authenticator

registration, FIDO2 best practices recommend that RPs employ user verification methods,

such as challenge-response verification to a user’s phone or email, to ensure that the actual

user is registering an authenticator. Prior work has shown that similar login challenges are

effective in limiting account takeover itself [90, 92]. However, while registering our authen-

ticators at our evaluated RPs (section 3.3.1 and section 3.3.1), we found that out of the 29

RPs analyzed, only Aliyun, Binance, Stripe, and Bank of America (BofA) challenged our

attempt to register an authenticator. They required us to enter a One-Time Password (OTP)

sent over either SMS or email, and BofA additionally required the PIN of the debit card

registered on the account. We note that while other services may have made risk-aware

decisions not to verify our identity, prior work has demonstrated that such user verifica-

tion challenges should augment risk-aware authentication to minimize the risk of account

takeover [92]. Thus, RPs currently do not widely deploy such measures to limit malicious

authenticator registration through traditional account takeover.

Phishing FIDO2 via User-Level Malware

Attack Description: A user could inadvertently install a malicious user-level (i.e., non-

root) application that misrepresents itself as the target RP’s official application. Similar to

a phishing site, the application could look and behave the same way as its legitimate coun-
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terpart. Once the user attempts to log into the RP through the malicious app, the attacker

has access to the user account. If the attacker can directly register their own malicious

authenticator for the user, then this case falls back to that of section 3.5.1.

However, some services may require user verification when registering a new authenti-

cator. In that case, the malicious application must trick the user into registering the mali-

cious authenticator while thinking they are registering their real authenticator (or wait for

the user to conduct an action that would require the same form of user verification). When

this occurs, the application could intercept the legitimate FIDO2 registration request and

instead register a malicious virtual authenticator embedded in the application itself (with

the user verifying the malicious authenticator registration, thinking they are registering

their actual authenticator or doing the user verification for a different action). Once regis-

tered, the malware could report the FIDO2 credentials (visible to the malware in plaintext)

back to the attacker, allowing the attacker to clone a similar virtual authenticator with the

same stolen credentials and remotely compromise the user’s account. Since FIDO2’s threat

analysis does not account for virtual authenticators, this attack is not discussed in existing

documentation.

From our characterization of RP FIDO2 configurations (in both section 3.3.1 and sec-

tion 3.3.1), we observe that only 14/29 RPs request attestation of any kind, and the remain-

ing RPs cannot ensure that they have trustworthy information on the authenticators being

used by clients. Furthermore, we find that 27/29 RPs – including financially sensitive RPs

such as BofA, PayPal, Binance, Stripe, and eBay, allow even a virtual authenticator to be

registered. Thus the vast majority of evaluated RPs are vulnerable to such an attack.

While RPs are broadly not allowlisting trusted authenticators, we explore the extent to

which they could, using our real-world user authenticator data (section 3.3.3). From the

distribution of attestation types that we observed from client authenticators (all on mobile

clients of our partner RP), as listed in Table 3.4, we find that the vast majority provide

attestation linked to either an Anonymization CA (Apple Anonymous; ∼ 71%) or attes-
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tation root certificates found in MDS (Android SafetyNet; ∼ 27%). Thus, for at least

mobile devices, attestation information from most authenticators can be verified and used

for allowlisting.

However, there are ∼ 1% of client authenticators that do not provide any attestation

(and 1 self-attested authenticator), for which the RP has no trusted information. In such

cases, RPs could disallow these unattested authenticators at the risk of impacting legiti-

mate users or permitting such devices but remain exposed to this attack. We briefly note

that for accounts linked to these non-attested authenticators, our partner RP indicated that

their risk systems identified significantly higher volumes of risky transactions (attempts to

steal funds) than typical for the average account, as well as evidence of attempted money

laundering through newly created accounts. We can also explore suspicious activity on

authenticators attested by Android SafetyNet, as SafetyNet provides information on the

calling/authenticating application in its attestation response [93]. From our sample of We-

bAuthn responses attested by Android SafetyNet, we found that ∼ 0.1% of attestations

did not include the calling application’s certificate, and another ∼ 0.1% had a certificate

different from that of Chrome on Android, the calling application it claimed. SafetyNet

also indicated that these sessions came from rooted devices. Thus, we have preliminary ev-

idence that suspicious activity from authenticators lacking proper attestation may already

be occurring in practice, exposing RPs that permit such behavior.

FIDO2 Hijack by Root Malware

Attack Description: Overprivileged devices, such as rooted Android devices or jailbro-

ken iOS devices, allow malware to circumvent built-in security mechanisms enforced by

the OS [94, 95]. A root-level malware can intercept and respond to a FIDO2 registration

request from a malicious virtual authenticator. Unlike the malware attack described ear-

lier, here the user can still interact with the legitimate RP application, but their FIDO2

operations are hijacked at the root level. While a strong attack, this threat is still realis-
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tic as a non-trivial population of mobile devices is rooted [96] (as we also confirm in our

measurements), and rooted devices are frequent compromise victims [97].

Measurement of Mitigation Adoption: This attack can also be mitigated by RPs veri-

fying attestation and allowlisting trusted AAGUIDs [65], which prevents the attacker from

registering a malicious authenticator. As uncovered above (in section 3.5.1), we found

that such mitigations are limited in practice. The 27/29 sites that lack trusted authenticator

allowlisting are similarly vulnerable to this attack.

27/29 RPs can increase their risk awareness by formulating policies to allowlist

secure and trusted authenticators.

3.5.2 Vulnerable Authenticator

FIDO2 authentication is available on a wide variety of devices, and the authentication se-

curity depends on characteristics of the device security, such as the availability, modality,

and accuracy of user verification, matcher protection, and private key management protec-

tion. Some authenticators may be weak/vulnerable and later compromised by an attacker

after FIDO2 registration. Here we consider threats where the attacker targets a vulnerable

authenticator.

Local Authentication Downgrade

Attack Description: The level of assurance an authenticator provides for a user’s iden-

tity varies with the modality of local verification used. It can range from biometrics

(e.g., fingerprint scan) to knowledge-based factors (e.g., PIN) to mere user presence, or

even no verification at all. FIDO defines stringent biometric performance requirements that

a FIDO-certified authenticator needs to adhere to [98], while prior work has shown that

knowledge-based factors such as PINs can often be observed or easily guessed [99], such

as by malware on the device. Therefore, the security posture of a user’s account could

significantly weaken if their authenticator allows for weak user verification methods (i.e.,
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PIN), which malware could successfully bypass. Similar social engineering downgrade

attacks have been demonstrated previously at the RP level [11].

Measurement of Mitigation Adoption: To mitigate this attack, FIDO2 provides the

User Verification Method Extension (uvm) which enables the RP to know which verifica-

tion methods (factors) were used for an operation [64, 100]. In case a PIN needs to be

used, such as when other modalities fail (e.g., physical obstruction for biometrics), We-

bAuthn is expected to soon implement an extension currently supported by CTAP called

minPinLength which conveys the minimum PIN length value of the authenticator to the

RP [101, 63]. Together, this information allows an RP to implement policies/requirements

on user verification methods, and/or adjudicate risk appropriately during an authentication

attempt. However, from analyzing the MDS data, we see that only 1 and 8 (out of a total

160) authenticators in the MDS currently support uvm and minPinLength, respectively.

Our RP partner also did not support any extensions during the pilot, so we could not mea-

sure whether clients support these extensions. Overall, we conclude that the authenticator

ecosystem does not yet widely support this mitigation.

In our RP characterization (section 3.3.1 and section 3.3.1), only 3/29 RPs required

user verification, allowing authenticators on other RPs to return a success without any local

verification of the user’s identity. No sites we studied declared support for the aforemen-

tioned extensions, with only 9/29 RPs supporting any FIDO2 extension. Thus, RPs are not

checking for robust user verification methods, and are vulnerable to local authentication

downgrade attacks.

Compromise of Vulnerable Authenticators

Attack Description: For a legitimate authenticator, if user verification can be circumvented

by malware, or its attestation or private keys can be compromised, either remotely or with

physical access to the authenticator, the authenticator is known to be vulnerable [102]. An

attacker can exploit such a vulnerability to compromise the authenticator’s security and
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potentially take over an account.

Measurement of Mitigation Adoption: FIDO2 recommends that RPs monitor the

MDS for security notifications declaring such vulnerabilities in authenticators registered

with FIDO [59]. Ideally, an RP should also periodically keep monitoring if vulnerabilities

are reported for previously registered authenticators, and in the case a vulnerability is dis-

covered, treat the authentication attempts from those authenticators as risky, until patched.

In our longitudinal measurement of the MDS starting September 2021 (in section 3.3.2),

spanning over a year, we did not record any security notifications for any authenticator. Yet,

we are aware of existing authenticator vulnerability. For example, Shakevsky et al. demon-

strated an IV reuse attack on Android’s hardware-backed Keystore in Samsung’s flagship

smartphones, leading to the compromise of private FIDO2 credentials, and a bypass of

FIDO2-based authentication [103]. Following their disclosure, Samsung published CVE-

2021-25490 with High severity and issued a patch in October 2021. However, neither

Samsung Pass, Samsung’s identity management service, nor Android with SafetyNet – both

authenticators registered with FIDO – reflected a vulnerability in the MDS. In fact, as of

May 2023, Samsung Pass’s MDS entry has not been updated since 2018, and Android with

SafetNet’s entry’s last update was in 2020 – both when they were first registered.

As an increasing number of devices and services bank upon the security guarantees pro-

vided by TEEs, other TEE implementations have also been similarly targeted [104, 105].

The lack of updates signals that the MDS may not be a trustworthy source of information

to make accurate decisions about vulnerable authenticators.

Credentials stolen from Virtual Authenticator

Attack Description: Users could install an application (or a Chrome extension [106]) that

includes an authenticator and allows the user to manage (export and sync) their FIDO2

credentials. While some users might choose this for its usability, it provides little security

guarantees, as the FIDO credentials reside in user space and can be stolen by malware.
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Stolen credentials can be easily seeded in a cloned virtual authenticator for the attacker to

gain access.

Measurement of Mitigation Adoption: RPs should disallow virtual authenticators.

As seen in section 3.5.1, 27/29 RPs permitted virtual authenticator, and are exposed to this

threat.

Authenticators need to implement FIDO2 extensions (e.g., uvm) which enable RPs

to ensure trusted user verification. RPs also need to actively track vulnerabilities

in authenticators, such as by monitoring public CVEs.

3.6 Authentication-Phase Attacks

In this section, we investigate how malicious software on the client can affect FIDO2 au-

thentication assuming that a malicious or vulnerable authenticator is not registered to the

user’s account. In this setting, the attacker is not able to compromise the authenticator (un-

like in section 3.5), and thus can only target the FIDO2 authentication phase. We consider

first the case where malware attempts to leverage existing legitimately-registered creden-

tials to authenticate, which is only possible with a limited set of authenticator properties.

Outside of those conditions, malware cannot directly utilize existing credentials for authen-

tication. Instead, malware must involve the user through a social engineering attack that

results in the user authenticating during insecure situations. Towards that, we identify a

unique social engineering attack where malware can trick users into authenticating sensi-

tive actions without them realizing. For both categories of authentication-phase attacks, we

discuss what mitigations exist to address them and the extent to which real-world FIDO2

deployments are configured to do so.
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3.6.1 Targeting Existing Legitimate Credentials

Attack Description: As discussed in section 3.1, FIDO2 has built-in protection (KHAc-

cessToken/authenticatorClientPIN) to prevent a user-level malware from accessing keys

previously registered by a legitimate application, and thus user-level malware is not able to

interfere with the FIDO2 authentication phase.

For root-level malware, as long as the FIDO2 Client resides as a Trusted Application

in the TEE, OS integrity checks will fail when the FIDO2 client attempts to access the

keystore, denying the malware access to the credentials. However, in the case of roaming

authenticators (e.g., a USB security key) where the FIDO2 Client is a root application

on the OS, root malware could bypass local user verification (by spoofing a successful

verification) to the authenticator and raise the request to the authenticator when it is plugged

in. If there is no user verification at the roaming authenticator itself (e.g., button push,

biometric validation), the malware could successfully trigger an authentication using the

user’s FIDO2 credentials, without them realizing it.

Measurement of Mitigation Adoption. To address this threat, RPs could declare

that they require platform authenticators during the authenticator registration protocol

(through one of the parameters passed during credential creation), disallowing roaming au-

thenticators. If an RP does want to allow roaming authenticators (e.g., to increase user

adoption or reduce user friction), it should use MDS metadata, which lists the user verifi-

cation methods supported by authenticators, to make a risk-aware policy/decision based on

the strength of the user verification method (or lack thereof). For example, the RP could

disallow roaming authenticators with weak user verification, or challenge authentication

attempts from them.

From our analysis of RPs (Table 3.2), only 5/29 RPs declare a preference for platform

authenticators, of which two (Mail.ru and Shopify) allowed registering a virtual authentica-

tor with external transports. Thus, most RPs are potentially exposed to this attack on users

with roaming authenticators which lack user verification.
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We investigated how common such roaming authenticators were. In our April 13, 2023,

MDS snapshot, we found that 139/160 authenticators were capable of acting as roaming

authenticators. Of those, only 4 can locally authorize an authentication without requiring

any user verification at all. Thus, the vast majority of roaming authenticators (even with

user verification as simple as user presence) could mitigate this issue in practice, limiting

the exposure of RPs.

Root-level malware can bypass FIDO-based authentication on external authenti-

cators, which lack on-device user verification.

3.6.2 Social Engineering Attack to Authenticate Sensitive Action

Here, we consider the scenario where the FIDO Client resides as a Trusted Application in

the TEE, so the malware (regardless of user-level or root-level) cannot directly trigger an

authentication. Instead, it must leverage a social engineering approach to cause an attacker-

desired authentication, as FIDO2’s workflow involves a human-in-the-loop.

Prior work has proposed such a social engineering attack on FIDO2. Jubur et al. demon-

strated an attack where multiple near-concurrent and indistinguishable 2FA authentication

prompts can trick the user into authorizing the attacker-initiated attempt [10], similar to

“MFA fatigue” and “push phishing” attacks [107, 108]. However, their attack requires a

synchronized timing of when the user would attempt to log in, and hence the authors con-

sider their attack a targeted one rather than a scalable one. Without an attack that could

be executed automatically and at scale, one could argue that this is a limited real-world

threat. However, we investigate and identify a unique social engineering attack that can be

executed in an automated fashion by malware on the client device, thus raising this threat’s

practicality.

We observe that in practice, real-world implementations of FIDO2 lack explicit user

consent for a specific action, as originally recommended by FIDO [109]. As a result, users

lack clarity about what specific action they are authenticating. In addition, online services
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apply Risk-Backed Authentication (RBA) systems that users lack transparency into, and

thus users are unable to accurately predict when they may be asked to (re-)authenticate [82,

110]. We combine these two observations to construct a unique social engineering attack

that tricks a user into authenticating an attacker-initiated sensitive action (which the user

does not realize is the action being authenticated), at the same time as when the user has

initiated a non-sensitive action (but does not realize that the action does not actually require

re-authentication). Sensitive actions could vary from RP to RP – we broadly define it as

an action that a user performs on their account which requires re-authentication or a step-

up/challenge authentication due to its sensitive nature. For example, financial and online

banking sites often consider financial transactions to new parties as sensitive, and many

other online services designate access to or change of personal profile settings as sensitive

(e.g., changing a recovery email address). As a real-world example, Bank of America

requires user verification when transferring funds above a threshold, and supports FIDO2

authentication for user verification [111].

Attack Setup/Assumptions: Conceptually, our attack makes no assumption about the

platform and authenticator properties. Given the KHAccessToken/authenticatorClientPIN

protection discussed in section 3.1, user-level malware, which would have a different (un-

trusted) AppID (and hence a different KHAccessToken/authenticatorClientPIN), would not

be able to trigger an authentication using existing FIDO2 credentials. However, in the Web

context, browser extensions are different because they act under the same AppID as the

credential-registering application (that of the browser), and have the same scope of control

as the actual user. Also, given that malicious browser extensions are already known vec-

tors for social engineering attacks [112], we choose to construct our attack via a Chrome

extension. (Note that as root-level malware can bypass the KHAccessToken/authenticator-

ClientPIN protection, spoofing the AppID, it can conduct a similar attack.)

The attack setup requires the user to have FIDO2 passwordless authentication enabled

on their account at a target RP. When they interact with the RP in a browser and perform
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an action that the user might consider sensitive (requiring re-authentication), but in fact

is not, the malicious extension will simultaneously initiate a sensitive action on the RP in

the background. The user will be tricked into authenticating the attacker’s sensitive action

mistaking it for a re-authentication challenge for their own action. Note that as our attack

assumes malware on the device, the attacker already has access to an authenticated session.

However, our focus is rather on attacking the step-up authentication challenge/RBA.

For our attack, the threat model assumes that the authentication prompt raised by the

OS, as seen in Figure 3.1d, cannot be compromised. However, root-level malware can

compromise such prompts, and trick the user into authenticating an attacker-controlled

session for an RP different from the one that the user is interacting with.

Attack Description: To describe our attack concretely, we assume WalletCompany to

be an example target RP deploying FIDO2 for passwordless authentication. WalletCom-

pany provides checkout functionality at merchant sites as well as person-to-person (P2P)

transfer of funds. We choose the user-initiated action to be a checkout on MerchantCom-

pany, a merchant site, and the attacker-initiated sensitive action to be P2P transfer of funds

to the attacker’s wallet on WalletCompany. The attack should also work on other RPs for

other combinations of user-initiated sensitive actions.

Once the malicious Chrome extension is installed (Figure 3.1a), it waits for the user

to visit the merchant site to make a transaction. This could be achieved by inserting a

content script that records all elements which are clicked. When the user checks out with

WalletCompany, as seen in Figure 3.1b, the click is detected and the extension spawns a

background Chrome process to initiate a transfer of funds to the attacker’s own wallet (Fig-

ure 3.1c) – since the Chrome instance has an active session on WalletCompany, no authen-

tication is required by WalletCompany at this stage. However, the P2P transfer of funds to a

previously unseen wallet is typically a sensitive action and would trigger re-authentication.

The user will see a WebAuthn authentication prompt within seconds of attempting to check

out with WalletCompany on MerchantCompany, as seen in Figure 3.1d. Since RBA sys-
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(a) User downloads and installs a
malicious browser extension [112].

Subtotal (1 item) $90
Shipping $10

Order Total $100

Pay with WalletCompany

MerchantCompany

(b) With an active session on WalletCo.,
user attempts to make a transaction on

another merchant site, say MerchantCo.

To: Attacker's Wallet

Transfer Amount $100

Transfer $100 now!

WalletCompany

(c) Extension detects the transaction and
attempts attacker-initiated action (e.g.,

transferring funds to the attacker’s wallet) in
a background tab. This triggers a FIDO2

authentication prompt.

WalletCompany.

(d) User is tricked into authenticating
the attacker’s transaction, mistaking it
as authenticating their own transaction

(which did not actually require
authentication).

Figure 3.1: Demonstration of our social engineering attack on FIDO2 authentication.

tems are neither transparent nor well-understood [82], the user will be tricked into believing

that the re-authentication prompt is for their checkout on MerchantCompany. Once they

authenticate, the transfer of funds would be authorized, and the user would not notice any-

thing suspicious because their checkout would have succeeded anyways.

Attack Proof-of-Concept (PoC): For simplicity, we demonstrate our concrete example
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attack using PayPal and eBay, which are leading mobile wallet and e-commerce compa-

nies respectively – via a malicious browser extension on Chrome 103.0.5060.53 on a 2019

MacBook Pro running OS X 12.4. We enabled passwordless authentication in one of the

author’s PayPal account, registering with Mac’s Touch ID via Chrome. We also log into

PayPal before the attack executes, establishing an active authenticated session. We will use

the terms WalletCo. and MerchantCo. for PayPal and eBay respectively, to describe the

attack as it can be generalized over other similar applications.

To demonstrate that an authentication prompt can be raised by a background process

spawned by an extension, we present a PoC Chrome extension in Listing 3.1. The ex-

tension requires permissions tabs and scripting to open the target RP’s site in a tab

and execute JS scripts in its context, as well as host permissions to our target RP

(WalletCo.). The extension opens WalletCo.’s WebAuthn login page in a new background

window and simulates a login button click to raise a WebAuthn authentication prompt to

the user. The user provides their biometrics, authorizing the attacker-controlled session.

Other than the prompt, the user never sees anything and their only action is providing their

biometrics. The attack is automated and takes only seconds to execute (e.g., time for the

page load and for the user to provide biometrics).

Measurement of Mitigation Adoption: To our knowledge, there are only a limited

number of existing mitigations to this attack, so RPs and users are broadly vulnerable.

However, we believe there are tractable directions for better mitigations.

For e-commerce specifically, the W3C Working Group has developed Secure Payment

Confirmation [113], which is available as the payment extension in WebAuthn and is

fully supported by Chrome. It provides transaction confirmation functionality to financial

services RPs, with permission to perform registration and authentication ceremonies on

behalf of the RP on merchant sites. The transaction confirmation includes information such

as payeeName, payeeOrigin, currency and value, among other things – thus

mitigating the potential for identity confusion in the context we demonstrated. However,
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in our real-world measurement of RPs (section 3.5), we did not find any RP supporting

the payment extension. In our MDS snapshot, we found that only 15% authenticators

supported a transaction confirmation display.

// trigger when the extension is installed/loaded

chrome.runtime.onInstalled.addListener(async () => {

// open new Chrome browser window

let window = await chrome.windows.create({

url: ’https://www.walletcompany.com/signin-webAuthn’ ,

focused: false,

state: ’minimized’

});

// wait for the page to load

setTimeout(() => {

chrome.scripting.executeScript({

target: {

tabId: window.tabs[0].id

},

// instrument an authentication attempt

function: () => {

document.getElementById(’logIn_start’).click();

}

});

}, 1000); // wait 1 second

});

Listing 3.1: background.js for the Chrome extension PoC that visits WalletCo.’s

WebAuthn login page in a new background window, and simulates a click on the login

button, to raise a WebAuthn authentication prompt to the user.

In the absence of protocol-level protection, user agents could also mitigate such an

attack by employing certain sanity checks before raising a WebAuthn request to the OS. For
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example, our attack can be mitigated if Chrome restricts navigator.credentials

API requests to be made only by a page that is in the user’s focus, and if RPs specify that

user verification by the authenticator is either required or preferred (and not discouraged).

To our knowledge, existing browsers do not implement such policies.

Additionally, in line with Prakash et al.’s proposal to modify the authentication prompt

design [114] to counter Jubur et al.’s attack, RPs could send out-of-band notifications, such

as a push notification to the user’s mobile device, indicating the transaction details. We are

not aware of any RPs currently doing so.

Attack Disclosure: We disclosed this attack via Google’s Bug Bounty Program and

recommended that Chrome restrict navigator .credentials API usage to the page

in focus to prevent such misuse. Google’s response was that while confusion with We-

bAuthn interactions across tabs is a known issue, our attack demonstrating the bypass of

step-up authentication is plausible, and a fix for it will be prioritized [115]. They noted that

they would need to work with RPs to gracefully handle the case of restoring a set of tabs on

a Chrome restart, as some of them might initiate re-authentication from the background.

The lack of trusted transaction confirmation information can be exploited by so-

cial engineering attacks to trick the user into authenticating actions they do not intend

to. Improved UI and user education could be stopgap solutions until the ecosystem ma-

tures to defend against such attacks.

3.7 Concluding Remarks

In this work, we evaluated the security posture of real-world FIDO2 deployments across

the Tranco Top 1K, particularly focusing on the impact of compromised clients. Here we

draw on our findings to synthesize key takeaways, as well as propose high-level recom-

mendations for FIDO2 deployments.

Compromised clients are a realistic and salient threat to FIDO2 deployments.

44



In section 3.4, we found that 96% of authenticators present in FIDO MDS are not cer-

tified to be malware-resistant, so a significant population of existing authenticators could

potentially be compromised by a motivated attacker. From real-world authenticator teleme-

try (via our partner RP), we found evidence already of system integrity compromise on

∼0.25% of hardware-backed clients and ∼13% of non-hardware-backed clients. Our eval-

uation of RPs in section 3.5 and section 3.6 revealed how RPs have not yet adopted rec-

ommended mitigations to combating compromised clients, making them potential targets.

In fact, our partner RP already has observed online abuse from active FIDO-authenticated

sessions on compromised devices. Thus, our study highlights that compromised clients

are a salient threat that must be accounted for by FIDO2 deployments. As FIDO2 gains

adoption, attackers will be even further incentivized to utilize this attack surface.

Improvements to mitigations are needed. Through our study, we uncovered various

shortcomings with the existing FIDO2 mitigations to compromised clients. For exam-

ple, a key recommendation is to maintain an assurance level for registered authenticators

by allowlisting either known authenticator AAGUIDs or authenticators with particular at-

tributes. However, in section 3.5.1, we found that nearly all (27/29) RPs do not enforce

such a policy. To the best of our knowledge, Microsoft is the only RP that mentions a “Key

restrictions policy” for passwordless authentication [116] (while BofA states that they re-

quire a FIDO2-certified authenticator, but we found that in reality, they do not verify if an

authenticator is actually certified). While some RPs may intentionally allow all authenti-

cators to encourage broader adoption1, security-sensitive RPs (e.g., BofA, PayPal, Stripe)

should ideally implement such a policy and adhere to strong authentication requirements

(e.g., the European Union’s Second Payment Services Directive [119]).

Another key recommendation is that RPs make risk decisions based on authenticator

metadata available from the FIDO MDS. However, we found the MDS to be incomplete,

as the metadata for popular authenticators (e.g., Apple devices) was missing. We also

1Passkeys are user-friendly FIDO2 credentials [117] designed to sync across devices. They are not device-
specific, and as such, currently do not support attestation [118].
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identified in section 3.5.2 that the MDS is not promptly updated with authenticator vulner-

ability information. These findings motivate the need for better MDS maintenance so that

it provides reliable authenticator information to support the FIDO2 ecosystem.

We found that limited mitigations exist for malware-driven social engineering attacks,

such as the one described in section 3.6.2, which can exploit the human-in-the-loop even

if trusted authenticators are registered. The FIDO Alliance had initially proposed gather-

ing explicit user consent for actions (i.e. ‘Transaction Confirmation’ [109]), which would

have mitigated such attacks by allowing an RP to confirm that the transaction is exactly

what the user intended. Subsequently, the W3C Working Group proposed the exten-

sion txAuthSimple in WebAuthn’s first specification [120], allowing RPs to specify a

prompt to be shown to users on a trusted display (e.g., the prompt in Figure 3.1d). However,

it was removed from WebAuthn’s second specification, due to a lack of client implemen-

tation support [121]. However, our results highlight the dire need for such mechanisms to

be widely supported, allowing RPs to securely convey to users what they are authorizing.

(In fact, some developers have similarly expressed their concerns with txAuthSimple’s

removal and advocated for it to be officially supported [121].) In the meantime, UI/UX

improvements (e.g., out-of-band notifications) can help users understand the action they

are authorizing, reducing the impact of social engineering attacks.

Risk policies can harden FIDO2. For securing traditional password-based authentica-

tion, online services have employed risk-based authentication (RBA) models for years [82].

Given the continued threat of compromised clients, as online services move towards FIDO2-

based authentication, we believe that they will benefit from similar risk-based policies built

on FIDO2-specific features.

A key challenge for RPs during FIDO2 authentication is the reduced risk telemetry,

which hampers their ability to detect anomalous login attempts. Risk signals from pass-

word authentication, including autofill/typing behavior, incorrect password attempts, and

mouse movements [122], lack equivalents for FIDO2 authentications. Instead, FIDO2-
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specific signals are needed, such as round-trip communication time with the authenticator.

For instance, an RP might decide to allow authenticators without attestation requirements

to reduce user friction, but challenge authentication attempts with anomalous round-trip

communication times with the authenticator. While Whalen et al. argued that a successful

FIDO2 credential creation represents a cryptographic attestation of human signals [123],

identity confusion attacks such as the one demonstrated in section 3.6.2 violate that as-

sumption (even if using a secure authenticator).

Interestingly, we have already observed some evidence of RPs modifying the risk pro-

file for users who authenticate via FIDO2, primarily considering such user authentications

to be less risky. Namecheap indicated that users registering a FIDO2 authenticator would

never see a CAPTCHA [124], while BofA said that a FIDO2 authenticator can be used as an

alternative to SMS-OTPs to verify high-value transactions [111]. Namecheap’s waiver of

bot defense is similar in concept to Cloudflare’s Cryptographic Attestation of Personhood

recently proposed by Whalen et al. [123], which uses FIDO2’s attestation to distinguish

human traffic from bot traffic. However, we found in section 3.5.2 that as Namecheap and

BofA both allow registering virtual authenticators, FIDO2 authentications are not inher-

ently less risk, and these RPs remain exposed to automated abuse and malware threats.

We suggest that existing authentication risk models [122, 125, 126, 127] should con-

sider more risk signals to verify if a FIDO2 authentication attempt was made by the right

user. FIDO2 has an extension interface that allows custom extensions for specific use-

cases [60]. Future work could explore an extension that runs in the trusted FIDO2 Client

and fingerprints the user’s authenticator interaction, to tell apart a real user from automated

activity. The FIDO2 Client’s privileged access could also fingerprint the user’s presence

via kernel-level events [128], device features [129, 130], or hardware features [131]. Such

risk models could help strengthen FIDO2 deployments in practice, and as a result increase

mutual trust between platforms and users.
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CHAPTER 4

INVESTIGATING FAKE ENGAGEMENT ABUSE ON YOUTUBE

As social media takes center stage in modern discourse, protecting online platforms from

abuse and manipulation is essential. Social media platforms, such as YouTube, Facebook,

and Vimeo, are driven by engagement metrics, including the view count of videos and the

number of likes on posts. Manipulation of these metrics is a form of online abuse.

Video view fraud is one distinct class of fake engagement abuse, which entails artifi-

cially inflating the view count of videos (i.e., when the total view count exceeds the number

of solicited views by legitimate users). Beyond the content popularity and visibility manip-

ulation also offered by other fake engagement vectors, video view fraud uniquely provides

a direct monetization mechanism as many platforms (including YouTube) pay video cre-

ators based on video views (specifically, platforms share a portion of the revenue derived

from ads displayed when users view a video). Furthermore, the bar for perpetrating video

view fraud is low; while other fake engagement efforts require logged-in users to execute

an action (e.g., liking or commenting on content, or sending friend requests), video view

fraud simply requires an arbitrary user to visit a webpage, where the video can start playing.

While other forms of fake engagement have been studied previously [17, 16, 18, 19],

there exists limited empirical characterization of real-world video view fraud. The prior

work that does exist [19] focuses on bot-driven automated view fraud. In this study, we

expand our understanding of video view fraud by investigating organic or human-driven

approaches. Organic view fraud relies on real human users (rather than bots) to generate

views, presumably because manually-generated fake views may be more challenging to

detect and block. Such activity is still classified as view fraud as users do not intentionally

request to watch the videos [132].

In this work, we conduct a case study of a large-scale, long-running, organic YouTube
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view fraud operation on one of the most popular free video streaming services [133],

123Movies1 [134]. Before users can watch a stream on 123Movies, a YouTube video

is displayed as a pre-roll advertisement and automatically played, thus generating a fake

view for that video. Given 123Movies’ immense popularity, this activity results in large-

scale YouTube view fraud. In our study, we reverse-engineer how 123Movies distributes

YouTube videos as pre-roll ads, and collect the YouTube videos it distributes over a 9-

month period. For a subset of these videos, we gather detailed metadata about video char-

acteristics (e.g., view count, content category), and track their dynamics over time. We

similarly collect metadata about the YouTube channels associated with the videos and an-

alyze their participation in the scheme.

Our analysis sheds light on the characteristics of this view fraud ecosystem. We find

hundreds of thousands of videos associated with tens of thousands of channels participating

in this view fraud effort. These videos and channels skew heavily towards music, gaming,

and entertainment content, hinting at certain industries that may engage in such activity.

In fact, we observe extremely popular music videos (with millions of views) involved.

We also assess the outcome of participating in view fraud, observing that while videos gain

views in the short term, the majority of videos eventually lose a substantial amount of views

(sometimes even within a week), presumably due to YouTube’s detection and removal of

abusive activity. Thus, the long-term success of this abuse seems to be limited (although

our constrained visibility into YouTube and the view fraud campaign’s operations prohibits

establishing a definitive relationship between the view fraud and outcomes). By analyzing

the channels that participate in view fraud, we identify that most participate only once or

over a short period of time (e.g., a few days), suggesting that the participating channels also

observe limited returns on investing in view fraud. Nonetheless, this view fraud operation

has survived for years, raising questions about the economics at play and mechanisms that

can combat view fraud, beyond detecting and removing fraudulent views.

1In a 2018 investigation, the Motion Picture Association of America (MPAA) found 123Movies to be the
world’s “most popular illegal site” serving 98 million visitors a month [133].
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Ultimately, this work provides insights on an organic form of video view fraud, expand-

ing on the limited prior work. Our findings provide further empirical grounding on attacker

behavior and the outcomes of online abusive activities in practice.

4.1 Background

Here we provide background about YouTube view fraud, as well as on related prior work.

4.1.1 YouTube View Fraud

On YouTube, a video’s view count is its currency. More views can translate to higher video

rankings in search results (potentially attracting more organic visits), as well as represent

broader popularity and approval for the content creator (particularly relevant for content

creators in marketing themselves [135]). Furthermore, video creators make money based

on the ad impressions generated while users view their videos. Thus, content creators strive

for higher view counts for their videos.

123Movies, a popular free video streaming service, facilitates artificially inflating YouTube

video view counts. Before 123Movies displays a video stream to a user, it overlays a pre-

roll ad on the stream (similar to legitimate ad-supported video platforms, such as YouTube

and Dailymotion). However, unlike pre-roll ads on legitimate platforms, 123Movies’ pre-

roll videos are regular YouTube videos, not ads. As shown in Figure 4.1, users must watch

a YouTube video for at least 30 seconds before clicking through to the stream, which is the

duration that YouTube requires a video to be played before recording a view [136]. While

organically driven, these YouTube video views are classified as view fraud, as content cre-

ators pay an ad network to obtain views for their videos [137], and the ad network in turn

pays 123Movies to show its users the videos [138].

4.2 Method

Here we describe our study’s method for investigating real-world YouTube view fraud.
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4.2.1 Data Collection

To understand the YouTube view fraud occurring through 123Movies, we collect the IDs

of the videos involved and their metadata, including information about the associated

YouTube channels.

Collecting Videos Receiving Fake Views.

To start, in July 2020, we reverse-engineered how YouTube videos are delivered as pre-roll

ads on 123Movies. Using mitmproxy [139] (as 123Movies uses HTTPS), we monitored

the plaintext Web traffic when accessing streams on 123Movies2. We identified that when a

stream is requested, as shown in Figure 4.1, 123Movies interacts with multiple ad networks

to request different types of ads (e.g., popups and banners). We traced the requests that

fetched YouTube videos to the API endpoint deliver.vkcdnservice.com. We be-

lieve that this endpoint belongs to an ad network named AdSpyGlass [140], as deliver.

vkcdnservice.com redirects to AdSpyGlass.com when loaded in a browser. Using

the Wayback Machine [141], we find that AdSpyGlass.com has existed since at least

April 28, 2019. Thus, we believe that this service has been operational for years (as it

remained online at the time of this writing).

When a video is requested from the AdSpyGlass endpoint, it responds with the URL

of another service endpoint, which actually provides the final YouTube video link. We

observe that across all responses, only a small set of secondary service endpoints are used,

which we refer to as subservices. We monitored 123Movies through July-September 2020

for active subservices, and found three in total. We observed greedseed3, and xtremeserve4

in July, and socpanels5 in August. To collect the YouTube videos involved in this view

fraud, we automatically milked all three subservices for YouTube videos, using a Python

2We used mitmproxy as 123Movies deploys anti-debugging techniques on its Web pages, which prevent
stream loads when detecting that a browser’s debugger is in use.

3greedseed.world/vpaid/getVideo.php
4xtremeserve.xyz/add.php
5socpanels.thevideome.site/feed
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Ad Networks ...

...

123Movies employs
different ad networks
for different kinds of

ads (e.g., banners,
popups, overlays). 

API endpoints used by
AdSpyGlass on the client-side to
fetch video parameters (e.g., link
to video, tracking parameters). greedseed xtremeserve socpanels 

Our script directly requests video parameters (containing
YouTube video ID) from these API endpoints, every 3 seconds. 

1

2

3

4

Figure 4.1: Reverse-engineering ad-delivery and collecting ad data from 123Movies.

script that queried each subservice for a video every 3 seconds6, and recording the IDs

of the YouTube videos returned. To avoid detection and rate limiting, we distributed the

milker’s requests across a pool of 20 proxy servers (all on our university network). Over a

9-month period (from July 2020 to March 2021), we collected ∼45k unique videos from

greedseed, ∼151k from xtremeserve, and ∼86k from socpanels. In Figure 4.2,

we plot the temporal distribution of newly collected videos for the three subservices. While

xtremeserve remained online throughout our data collection, providing new videos at

a consistent rate, greedseed and socpanels ceased operations by October 2020.

6We determined the querying rate through manual experimentation, aiming to avoid rate limiting and
overloading the API endpoints.
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Collecting Video Metadata

To better investigate the gathered videos involved in the 123Movies view fraud operation,

we used YouTube’s Data API v3 [142] to periodically collect metadata snapshots for these

videos and their channels, starting from when we first observed a video distributed by a

subservice up until March 2021 (or until taken down). The metadata we acquired includes

the video and channel titles, author, language, topics, and video and channel statistics (e.g.,

numbers of views and subscribers). Initially, we collected weekly snapshots starting July

12, 2020, but later transitioned to daily snapshots starting August 3, to monitor video view

counts at a finer granularity. As we started collecting videos from socpanels on August

8, we recorded daily metadata snapshots for all socpanels videos. Since YouTube rate

limits access to its Data API per API key, we generated 20 API keys (the maximum number

of keys allowed by Google per account) to maximize our daily quota. This quota amount

allowed us to access daily snapshots for the first ∼150k videos gathered (which we reached

in September 2020), which were associated with ∼75k channels. Every 5 days, we also

collected metadata snapshots for other videos hosted by these channels which we did not

record as involved in this view fraud effort (∼818k videos). Table 4.1 summarizes our

metadata dataset.
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Figure 4.2: Temporal distribution of new videos recorded as participating in view fraud.
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Table 4.1: Statistics about the metadata snapshots collected from YouTube’s Data API.

Metadata Snapshot
Frequency # Videos

Advertised YouTube videos
1 day

∼150k
Channels of advertised videos ∼75k
Non-advertised videos 5 days ∼818k

4.2.2 Limitations

Our study takes a step forward in exploring the ecosystem that facilitates YouTube view

fraud. However, we lack full visibility into the ecosystem, which leads to several important

limitations:

• Our data collection is centered on 123movies2020.org, a mirror of 123Movies. We

note that 123Movies operates by redirecting multiple domains to a working mirror [135],

so beyond direct visitors, our mirror likely received visitors from other domains (e.g.,

123movies2020.email). However, there may exist other mirrors of 123Movies

or similar streaming sites that function differently, and for which our findings may not

hold. Similarly, as described in section 4.2.1, we manually monitored 123Movies and

initially discovered three active subservices. However, more such subservices may exist

that behave differently. Nonetheless, we believe that our large-scale data provide useful

insights into an organic view fraud operation.

• We ultimately are unable to distinguish fake views from real organic ones, and it is pos-

sible that the YouTube videos we monitor are involved in other view fraud operations.

This lack of visibility prevents us from establishing causal relationships between the view

fraud we observe and video outcomes, although we explore correlations to the extent pos-

sible.

• There are inherent delays between when a video is first advertised on 123Movies as part

of the view fraud campaign, when we first milk it, and when we record its first metadata

snapshot. These delays limit our observation of initial video dynamics, which we further

discuss in section 4.3.3.
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4.3 Findings

Here, we analyze our collected datasets to answer three research questions about the inves-

tigated organic view fraud ecosystem:

RQ1: What kind of videos receive the fake views?

RQ2: How extensively do videos/channels participate in view fraud?

RQ3: How effective is the view fraud?

4.3.1 RQ1: What kind of videos receive the fake views?

Content. We first analyze the general themes of the videos receiving fake views, using

the topic tags in the video metadata annotations from YouTube. The distribution of topics

among videos, as depicted in Figure 4.3, shows that the largest portion of videos covers

music and entertainment topics (∼35% of all videos). This observation corroborates prior

reports of the music, media, and entertainment industry’s participation in view fraud [135].

Lifestyle and gaming were also popular video topics, each involving approximately 16%

of videos.

Other topics
26.4%

M
usic

21.9%

Lifestyle (sociology)
16.3%

Hip hop music
8.2%

Video game culture
7.41%

Action game
5.61%

Entertainment
4%

Food
3.71%

Role-playing video game
3.43%

Society
3.01%

Figure 4.3: Distribution of topic tags of the YouTube videos.
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While YouTube requires content creators to indicate when videos contain “paid promo-

tions”, their API does not disclose this information publicly and affiliate marketing disclo-

sures on YouTube have previously been documented as rarely enforced [143]. As a result,

we are unable to assess if videos contained commercial content.

Age. To further characterize the videos receiving fraudulent views, we studied the

age of the videos and channels involved, as shown in Figure 4.4. In Figure 4.4a, we plot

the number of days between when a video was published on YouTube and when we first

recorded it as advertised in this view fraud ecosystem. (Here, our results are upper bounds

on video age, as we may not have observed initial advertisement for videos already being

advertised at the start of our data collection.) We see that ∼80% of videos collected from

xtremeserve and greedseed and ∼45% of those from socpanels were published

within 50 days of first observed advertisement. Meanwhile, as seen in Figure 4.4b, the

median year of first video publication for YouTube channels participating in the view fraud

was 2018, with only ∼20% of channels publishing for the first time after 2020 (for all

subservices). These findings indicate that while the videos involved in view fraud tend to

be relatively new, the participating channels are often long-established, with some over a

decade old.

Popularity. We additionally investigate the initial popularity of view fraud videos

by evaluating the number of views in our first metadata snapshot for each video (taken

within a day of being first milked). We plot this distribution in Figure 4.5, seeing that

over 65% of videos already had more than a thousand views upon our first metadata snap-

shot, with a noticeable inflection point at approximately a thousand views for greedseed

and socpanels. We hypothesize that these videos (represented near the inflection point

in Figure 4.5) might have had a negligible number of views initially, and gained at least a

thousand views upon being advertised on 123Movies (before our first metadata snapshot).

For each subservice, we also look at the top 3 most popular videos (see Table 4.2) and

the top 3 channels by the number of videos advertised on 123Movies (see Table 4.3). Inter-
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(a) CDF of the age of view fraud videos when we first observed the videos advertised.
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(b) CDF of dates when channels participating in view fraud published their first videos.

Figure 4.4: Age of videos and channels involved in view fraud.
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Figure 4.5: CDF of the view count of videos from their first recorded metadata snapshot.
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estingly, we see that the top videos receiving view fraud include “Despacito” by “LuisFon-

siVEVO”, which was the most viewed video on YouTube overall from 2018-2020 [144].

Another popular video was “Never Gonna Give You Up” by “RickAstleyVEVO”, a 1987

song that is part of a popular Internet meme known as “Rickrolling” [145]. These videos

are already popular, with hundreds of millions of views, and we are unclear about their

motivations for participating in view fraud.

4.3.2 RQ2: How extensively do videos and channels participate in view fraud?

Participation across subservices. In our dataset, we observed three separate subser-

vices that AdSpyGlass relied upon to distribute YouTube videos for advertisement on

123Movies. We first evaluate the extent to which videos were distributed by different sub-

services, as depicted in Figure 4.6. We find limited overlap in the videos milked from

different subservices; no more than ∼6% of videos from one subservice was observed for

another subservice, and less than ∼0.5% of videos was seen for both other services. Chan-

nels also exhibit limited overlap across subservices, with only 5% of channels observed

with videos advertised by two subservices, and only 0.2% of channels observed for all

three subservices.

greedseed

41.2k
(5.3k)

socpanels

82.5k
(59k) xtremeserve

146k
(14.8k)2k

(985)

2.5k
(458)

1.3k
(151) 230

(30)

Figure 4.6: Overlap in the videos provided by the three different subservices.
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View Fraud Duration per Video. We investigate the duration for which videos are ad-

vertised as part of the view fraud operation. In Figure 4.7, we plot the proportion of videos

that remain advertised over different durations, for each subservice. We observe differences

across subservices. For socpanels, ∼80% of videos were advertised for over a month,

whereas half of xtremeserve and greedseed videos were advertised for only a day.

We note that for videos already being advertised when we first started milking a subservice,

our observed duration lower bounds the true duration. However, only small portions of the

videos collected for xtremeserve and greedseed were from the initial milking peri-

ods (as seen in Figure 4.2), so our high-level observations hold. (For socpanels, a larger

portion of videos was collected at initial milking, but the advertising duration is already

significantly longer than with the other two subservices.) We hypothesize that the differ-

ences across subservices may have arisen due to different service offerings. For example,

socpanels’ longer video advertising could be because it offers monthly view fraud ser-

vices, instead of a daily offering. Alternatively, if socpanels provided guarantees on

video view growth, videos may remain actively advertised by socpanels for longer pe-

riods (see section 4.3.3). However, we lack further visibility into the different subservices’

operations to validate our hypothesis.
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Figure 4.7: Proportion of videos that remain in circulation over time.
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View Fraud Participation per Channel. To understand how extensively channels

participate in view fraud, we analyze the number of videos we observed receiving view

fraud per channel, as depicted in Figure 4.8. We find that over 70% of channels only

advertised one video on 123Movies. In Figure 4.9, we also plot the duration over which

channels advertised new videos. We see that more than 90% of channels only advertised

new videos over a period of up to 10 days. We note that channels possibly participated

in this view fraud campaign prior to our data collection, and our results are lower bounds.

However, given the short periods that channels were observed actively participating with

new videos, we believe it is unlikely that we missed observing significant amounts of prior

channel activity. Thus, channels appear to only participate in this view fraud activity to

a limited extent, either involving few videos or participating only over a brief duration.

This observation naturally raises a question about the efficacy of this ecosystem, our final

research question.
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Figure 4.8: CDF of #videos advertised per channel, for each subservice.

4.3.3 RQ3: How effective is the view fraud?

Finally, we aim to evaluate the efficacy of the view fraud. To do so, we require analyz-

ing videos for which we observed the beginning of their advertisement in the view fraud

campaign. We identify such videos through multiple filtering steps.
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Figure 4.9: CDF of #days over which a channel advertises new videos.

First, we filter out the small portion of videos that appear across multiple subservices,

to avoid convoluting the influences of different subservices. We then filter out videos that

were already advertised when we began milking a subservice, as we may not have ob-

served the start of their involvement in view fraud. For each subservice, we analyzed the

growth in videos collected and identified the inflection point when the rate of new video

collection reached a steady state, reflecting the natural rate of new videos being distributed

by a subservice (rather than the gathering of already advertised videos that we had sim-

ply not yet observed). This initial data collection period lasted for 3, 11, and 15 days

for xtremeserve, greedseed, and socpanels, respectively, and we filtered out the

videos observed during those periods.

Finally, we further filter out videos where their first metadata snapshot was taken more

than 12 hours after first observed advertisement, as the initial view counts recorded later

than that duration may be too inaccurate. We explored other thresholds but chose the 12

hours window to balance the accuracy of the initial view count observed with the size of the

remaining unfiltered video population across subservices. Our remaining unfiltered video

population consists of 13.3k videos for xtremeserve, 4.7k for greedseed, and 3.8k

for socpanels.

In our analysis, we consider two penalties that YouTube applies to discourage view
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fraud. First, YouTube discounts views that they identify as fake engagement [18]. Sec-

ond, YouTube takes down videos that violate its Terms of Service, including those that

artificially manipulate engagement metrics [146].

Net Change in View Counts

We analyze the unfiltered video population (for which we observe their initial advertise-

ment by a subservice and obtain a timely first metadata snapshot), comparing the net change

in view counts for these videos conditioned on (i) time and (ii) the initial view count.

View Count Change over Time. In Figure 4.10, we depict how the video view counts

change over time by plotting the distributions of the view count changes at each 2-day inter-

val across the first 20 days after the initial video advertisement, as well as the all time dis-

tribution, which compares the first and last snapshot per video across our full measurement

period (using the last valid snapshot, if a video is taken down during our measurement).

For each time interval, we display separate boxplots for each of the three subservices, as

well as one for all other videos of channels participating in view fraud, where these videos

were not observed as advertised.
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Figure 4.10: Boxplots of the net view count changes for videos, over different time periods.
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We see that in the first few days after their initial metadata snapshot, the majority of

videos gain views (sometimes in the thousands) for all three services. However, within

a week, the median video has negative net growth in view count, across all three sub-

services. Ultimately, the median long-term change in view count is 0, 232, and -136 for

socpanels, xtremeserve, and greedseed, respectively. We also find that the me-

dian view count change for other channel videos that were not observed as advertised is

small but positive (8). However, a quarter of these other channel videos had net negative

view count changes, suggesting that they too were involved in other view fraud efforts (or

alternatively are being falsely penalized by YouTube). These results suggest that while

this view fraud campaign might be effective in the short term, YouTube is able to largely

mitigate its visible impact in the long term.

View Count Change by Initial View Count. We next assess the distribution of view

count changes, conditioned on the videos’ initial view counts. In Figure 4.11, we plot

heatmaps that visualize the distribution of view count changes (across our full measurement

period) for videos with up to 10k initial views (which is over 80% of videos for all three

subservices, as seen in Figure 4.5).

We observe that for all three subservices, the majority of videos experience net negative

view growth, with the highest densities of videos near the y = 0 line, which indicate limited

net change in view count, as well as the y = −x line, which indicates that all initial views

observed were removed. This result reinforces our conclusion that YouTube is able to

mitigate view fraud in the long term. We note that a small portion of videos does experience

sizable view count growth, which could be false negatives in YouTube’s detection or cases

where these videos attract real organic viewers.

Video Takedowns

When a YouTube video is taken down, its metadata snapshot indicates that the video is

not found or unavailable. We note that a video may be taken down for various reasons
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Figure 4.11: Distribution of net view count changes for videos, for each subservice.

beyond artificially manipulating engagement metrics [146], such as copyright/trademark

infringements or inappropriate content, although its metadata does not indicate the spe-

cific takedown justification. Nonetheless, we believe that it is valuable to characterize the

takedown of the videos observed participating in view fraud.

Figure 4.12 plots the proportion of videos that remain online over time after the video

is first advertised. We find that in total, less than 5% of greedseed and xtremeserve

videos were taken down within 50 days, whereas for socpanels, nearly 8% of videos
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were removed within 10 days of being advertised (with about 5% removed within the first

day). We hypothesize that socpanels videos may have been more heavily penalized due

to a higher rate of video distribution; during our monitoring of 123Movies, we observed

that AdGlassSpy returned socpanels videos more frequently than for the other two

subservices. For all other videos of the channels participating in the view fraud that were

not observed as advertised, we found only 5 were taken down in total (out of 818k). Thus,

videos receiving view fraud are significantly more likely to be removed, although only a

small minority of videos receive such penalties, and YouTube appears to primarily rely on

eliminating fake views instead of taking down videos.
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Figure 4.12: Proportion of videos receiving view fraud over time after first advertisement.

4.4 Concluding Remarks

In this study, we conducted an empirical investigation of a large-scale organic YouTube

view fraud campaign. We monitored the campaign’s operations over time to characterize

the participants in this ecosystem, their behaviors, and the outcomes of the view fraud.

What we found was an expansive ecosystem with hundreds of thousands of videos from

tens of thousands of channels.

Our investigation into the success of view fraud efforts suggests that benefits are pri-
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marily short-term, and that YouTube is able to quickly detect and remove many of the

fake views. We also observed that this operation has only a few “repeat customers”, who

typically participate only for a brief period of time, perhaps recognizing the poor return

on investing in the view fraud. This brings into question how this operation continues to

thrive over years. It seemingly exhibits “snake oil” properties, where the promised outcome

(i.e., growth in views) is not truly delivered. Like with many snake oil scams, we hypoth-

esize that this ecosystem survives by luring in new unsuspecting participants. However,

future work can build on our initial results to study how participants are drawn into this

scheme and the economics at play. It is interesting to note that over half of participating

channels have over 1k subscribers, which is one of the qualifications required for receiving

ad revenue from videos via the YouTube partner program [147]. It is possible that ad rev-

enue from videos could change the cost-benefit trade-off for participants (such as through

arbitrage, where fake views are cheaper than the ad revenue received), although the lack of

long-term participants suggests otherwise.

Overall, the view fraud campaign remains persistent, despite YouTube’s ability to de-

tect and remove fake views. Thus, further work is needed on other methods to combat this

abuse vector. For example, we observed that our studied view fraud operation relied on link

redirection when loading the YouTube videos (such as using Twitter’s t.co link shortener

and Google Plus’s redirection link7). This redirection is done presumably to obfuscate the

HTTP referer, which would reveal the true location of where the YouTube videos are dis-

played (i.e., 123Movies) and potentially lead to easier detection and filtering by YouTube.

Therefore, one signal for detecting videos involved in such campaigns could be the fre-

quency with which a video is accessed from such redirection links. Other socio-technical

directions may also need to be considered, such as more punitive penalties to discourage

such view fraud activity or legal action. Ultimately, we consider our study to be a step for-

ward in better understanding video view fraud in practice, informing future exploration.

7https://plus.google.com/url?<youtube-link>
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CHAPTER 5

PRIVACY INVASIVE LOCAL NETWORK COMMUNICATIONS ON WEBSITES

Websites today stitch together Web resources from numerous sources. Beyond its own

first-party content, a website fetches various third-party resources such as JavaScript (JS)

libraries, CSS style sheets, images and videos, and even other webpages via inline frames.

Typically, we think of these third-party resources as hosted by public Internet services,

including other Web servers, content distribution networks, and API endpoints. However,

nothing in modern Web browsers prevents a website from also attempting to communicate

with internal network services, such as those on the browser’s localhost and other devices

within the Local Area Network (LAN), the addresses as defined in RFC1918 [148]. For

example, a website could include JS code that initiates a request to a service running on a

visitor’s localhost. As a consequence, a browser affords a degree of internal network access

to external entities.

Why would websites need to communicate with local destinations, given the uncer-

tainty and diversity of local devices and network services? One legitimate reason might

be for a website to coordinate with an affiliated native application (e.g., visiting a video

meeting URL opens the native video conferencing software). However, prior work [20, 21,

22, 24, 25, 26] has identified that in theory, such access could also be used for malicious

purposes. These studies have developed proof-of-concept demonstrations of user and LAN

device fingerprinting, as well as network attacks on internal services. Particularly with user

profiling and tracking, websites and advertisers have escalated to ever more complex and

surreptitious methods for gathering user identifiable information [39], and one can plausi-

bly envision the adoption of these internal network based approaches. The proliferation of

consumer IoT devices [149] further exposes users to potential security and privacy viola-

tions.
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In this work, we explore whether websites are using local network communications in

practice. We empirically evaluate the local network behaviors of both popular and mali-

cious websites at scale. We crawl and monitor the requests made by landing pages of the

Tranco top 100K domains [150], performing two sets of measurements, half a year apart.

We similarly crawl and monitor the requests made by ∼145K malicious websites drawn

from abuse, malware, and phishing blacklists. Across these websites, we assess whether

they generate locally-bound traffic, what the nature of the local traffic is, and why they

may be communicating with internal network services. As different OSes support varying

network services, a website’s locally-bound traffic may depend on the underlying host OS.

Thus, we also explore how websites’ localhost and LAN behavior may differ across three

popular desktop OSes: Windows, Ubuntu, and Mac OS X.

In total, we detect landing pages of over 100 benign domains and over 150 malicious

websites communicating with localhost services or private network IP addresses. While

this population may be relatively small, indicating that this behavior is not widespread (yet)

among websites, it is a non-trivial number of sites exhibiting rather unexpected network

activity. Furthermore, several of the observed websites are highly ranked with millions of

users, including 19 sites ranked within the top 10K. We identify that for many sites, the

internal network activity is not uniform across OSes, particularly skewing towards activity

exclusively on Windows. Additionally, we note the extensive use of WebSockets for initi-

ating such communication, which bypasses the Same-Origin Policy. These characteristics

potentially suggest the intentional targeting of certain platforms.

To understand why these websites may be contacting services hosted on the local net-

work, we manually analyze their behavior. For popular websites, we find that over 40%

of them explicitly conduct host profiling. Upon deeper investigation, we determine that

this profiling is performed for fraud protection and bot detection, rather than explicit ad-

vertising or user tracking purposes (although this approach could be readily adapted for

such uses). We also observe a large set of top websites whose local network activity arises
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due to remnants of website development and testing. These cases should be benign, but

highlight a class of Web developer errors that should be straightforward to detect and re-

mediate. Finally, we also identify a legitimate scenario for localhost communication where

a top website communicates with its affiliated native application. Efforts to protect users

from malicious local network traffic generated by a website must preserve these valid use

cases.

For malicious sites, we do not find evidence of internal network attacks. Rather, the ob-

served local network traffic mirrors that of top sites. We detect that some phishing sites have

cloned their Web interfaces from a legitimate site, where the legitimate site itself is con-

ducting localhost profiling. As a consequence, the phishing sites host the same JavaScript

libraries as the target site, and thus also generate the same local network traffic. For the

other malicious sites, we find that the local network activity reflects the same sorts of Web

developer errors seen on top sites, indicating that either the attackers made similar errors

while developing their attack sites, or that perhaps more likely, these sites are compro-

mised and the local traffic reflects the developer errors exhibited on the original benign

sites. Overall, we do not attribute malicious intent to the local network traffic witnessed on

these malicious sites.

Ultimately, our study provides the first large-scale measurement of the internal network

behaviors of modern websites, uncovering both intentional and unintentional causes of

locally-destined traffic. We conclude by discussing the implications of our findings on

Web security and privacy, as well as potential directions for advancing user online safety.

5.1 Method

In this section, we describe our method for examining if and how websites interact with

users’ localhost and LAN resources. We consider two sets of websites, one consisting of

popular sites, and the other consisting of known malicious webpages (e.g., phishing and

malware sites).
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5.1.1 Data Collection

Measurement Populations. To study popular websites, we focus on the top 100K do-

mains in the Tranco top list [150]. This set of domains affords a large-scale exploration of

top websites that users visit. We conduct two sets of measurements of the landing pages of

the top 100K domains – one using the Tranco snapshot taken on June 3, 2020, and the other

taken on March 11, 2021. To evaluate the local network behavior of malicious webpages,

we collect ∼145K known malicious URLs that were actively listed on one of several block-

lists: SURBL (abuse, malware, and phishing sites) [151], Abuse.ch’s URLHaus (malware

sites) [152] and PhishTank (phishing sites) [153]. As these blocklists often list multiple

malicious URLs mapping to the same domain, we only select one malicious URL per do-

main to increase our measurement’s coverage of malicious domains. We monitored and

crawled webpages on the blocklists from March – April 2021.

Measurement Setup. As depicted in Figure 5.1, for both the landing pages of top web-

sites and malicious webpages, we fetch and render (with JavaScript enabled) the target

webpage using a full browser instance running within a virtual machine (VM), while moni-

toring the network requests generated by the website. Our Web crawler starts a full Google

Chrome (v84) instance with a clean profile (incognito mode) via Chrome’s command-line

interface1. As we are exploring how a website may interact with localhost and LAN re-

sources, which are external to the browser and may vary depending on the underlying OS,

we visit all websites across three popular desktop OSes: Windows 10, Linux (specifically

Ubuntu 20.04), and Mac OS X (v10.15.6). We conduct the Windows 10 and Linux Web

crawls within VMWare VMs, running on a server within Georgia Tech’s network (with

firewall disabled). For the Web crawl on Mac OS X, we perform the crawl directly on a

MacBook Air laptop residing on a residential Comcast network in Atlanta.2 Throughout
1We avoid using more popular crawling tools, such as Puppeteer [154] and Selenium [155], as a website

can detect their presence [156] and change its behavior – potentially contaminating our measurement.
2As Mac OS X is licensed only for use on Apple hardware, we conducted our Mac-based crawls directly

on a Mac laptop.
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our measurements, we disable Chrome’s Safe Browsing feature, which blocks network re-

quests to destinations on Google’s Safe Browsing blocklist [157]. This configuration is

necessary to ensure that Safe Browsing does not interfere with our measurements, such as

blocking the browser instance from visiting a malicious page.

Chrome on
Ubuntu 20.04 VMs

Chrome on
Windows 10 VMs

Georgia
Tech's

ISP

Comcast's
Residential ISP

Parse NetLogs

Chrome on
 Mac OS X

10.15.6

1

2

3

4

Figure 5.1: Our data collection method for measuring websites’ local network activity.

Web Telemetry. Across all three OSes, for each target webpage, we load the page and

monitor its network activity over a 20 second period, to permit time for execution of JS code

and loading of dynamic resources. To select this delay threshold, we randomly sampled 100

websites (landing pages of domains from the top 100K list) and noted the time that it takes

to completely load the page. We found that more than 98% of all requests (to any resource,

local or otherwise) were made within the first 15 seconds, with the majority being made

within the first 5 seconds. Prior research also suggests that users often spend 10–20 seconds

on a webpage before navigating elsewhere [158]. Therefore, to measure the most common

effect of these websites on users, we chose a delay threshold of 20 seconds. Since our

analysis of our first crawl of top websites (in section 5.2.2) suggested that this threshold

suffices in detecting the majority of localhost and LAN activity, we continued with the
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threshold in the second crawl.

For gathering network telemetry generated by a webpage while it loads, we record the

network logs generated by Google Chrome’s network logging system [159], which compre-

hensively logs all network events (i.e., any network requests sent and responses received)

on Chrome’s network stack. Among other data, this telemetry includes the following for

each event:

• time: specifies the timestamp for the network event.

• type: specifies the type of network event as defined by Chrome. For example,

URL REQUEST events indicate GET/POST requests.

• source: specifies the entity that generated the event. When a new network request

is initiated, it is assigned a new source ID (in serial order). Subsequent dependent

events (e.g., responses) are assigned the same source ID, allowing the events within

a network flow to be logically grouped together.

• phase: specifies the phase of the network event (either BEGIN, END, or NONE).

We parse and store the network logs in a database for efficient querying. From this

telemetry, we can comprehensively observe whenever a webpage initiates a request des-

tined for localhost or an IP address in the private IP address range, what precisely that des-

tination is (e.g., the full URL), and what entity generated this request (the Chrome browser

itself also generates network traffic, which we filter out based on the network event source).

Additionally, we also consider websites that redirect to a local destination, since in theory,

websites can send a request to a local resource, even if they can never receive the response.

Throughout our crawl, before visiting a webpage, we first check for network connec-

tivity by pinging Google’s DNS server (8.8.8.8). This ensures that we crawl a site only

when the measurement infrastructure has Internet connectivity, and thus we can differenti-

ate between website load failures and network issues on our end.
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Ethics. As we conduct a large-scale Web measurement, we take care to minimize the

load induced on the websites we visited. For each OS, we visit each site only once, and we

start measurements on each OS at different times. Thus, we visit each site up to three times

without concurrent visits, which should be a manageable load for websites.

5.1.2 Data Characterization

Our final datasets consist of 11 TBs of telemetry data collected from the following mea-

surements:

1. Tranco Top 100K domains (as of June 3, 2020) on all three OSes, measured from July

24 to September 25, 2020.

2. Tranco Top 100K domains (as of March 11, 2021) on Windows and Linux3, measured

from March 22 to May 1, 2021.

3. ∼145K known malicious webpages on all three OSes, measured from March 22 to May

1, 2021.

We observe a ∼75% overlap between the two Tranco top list snapshots we used, in-

dicating that the majority of top domains in our dataset were measured twice half a year

apart. In total, we successfully loaded and gathered telemetry from ∼90% of domains in

both sets of Tranco top list measurements. This success rate is commensurate with that

observed by the creators of the Tranco top list [150]. For the measurement of malicious

webpages, we successfully gathered telemetry from ∼70% of webpages. We further man-

ually investigated a random sample of webpages that were not successfully crawled and

confirmed that they remained inaccessible, giving us confidence that our collected data

should comprehensively cover the accessible websites.

Table 5.2 shows our crawl success rate statistics, including the top errors when failing

to load a domain’s landing page. Nearly 90% of errors in all three crawls were due to DNS

name resolution failures. Manually examining a random sample of these DNS errors, we

3We encountered logistical issues preventing us from conducting the second Tranco top list measurement
on Mac OS X, related to our need to execute the crawl on a bare-metal environment.
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observed that the domains indeed lacked name resolutions, but we could identify subdo-

mains (e.g., through search engines) for which name resolutions existed. We note that in

many cases, the domains are CDNs or API endpoints. Recall that our periodic connectiv-

ity test did not reveal any network outages on our end, indicating that these errors did not

arise due to network connectivity issues with our measurement setup. We also explored the

rank of the domains that we failed to crawl and observed that they were evenly distributed

among the top 100K, indicating that the errors do not skew towards high or low-ranked

domains.

5.1.3 Limitations

The data collected in this study affords a large-scale evaluation of website-generated net-

work traffic. However, there are several important limitations to our methodology.

• Our measurements are conducted using Google Chrome and three desktop OSes,

which are widely available and popular. However, websites may behave differently

on other browsers and OSes (such as mobile OSes). Future work can extend our

method to evaluate these other platforms.

• We only fetch the landing pages of top domains, and our crawler does not simulate

user interactions with the webpages. As a consequence, our data does not capture the

behavior of internal website pages, nor activity triggered by user actions. Thus, the

number of domains for which we identify local network activity is a lower bound of

the true number of websites exhibiting such behavior. We leave a broader exploration

of these dimensions for future work.

• We monitor a webpage’s behavior for 20 seconds. This threshold was determined

based on an experiment we performed, as described in section 5.1.1, as well as prior

research on user browsing behavior [158]. Our subsequent analysis (in section 5.2.2)

suggests that this threshold suffices in detecting the vast majority of website localhost
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and LAN activity. However, we would fail to detect such behavior on websites where

the activity commences beyond our 20 second threshold.

• Due to logistical constraints, our Web crawl on Mac OS X was conducted on Com-

cast’s residential network, whereas our Windows and Linux Web crawls were per-

formed on Georgia Tech’s network. In theory, crawl results could differ due to

varying network configurations or network-dependent (including a network’s geolo-

cation) website behavior. However, we did not identify significant network-based

discrepancies in our Web crawl telemetry – neither during our manual investigations

of websites nor during our data analysis.

5.2 Findings

Here, we analyze our datasets on network activity generated by websites, to answer three

research questions about the activity destined to a visitor’s local network (i.e., localhost or

LAN).

• RQ1: Which websites are generating local network traffic?

• RQ2: What are the characteristics of local network traffic?

• RQ3: Why are websites making local network requests?

For localhost activity, we detect requests generated by websites that are destined for

either the localhost domain or loopback IP addresses (i.e., 127.0.0.1 for IPv4 and ::1

for IPv6). To identify LAN activity, we identify requests made by websites to IP addresses

in the IANA-reserved private IP address ranges for IPv4 and IPv6 [148]. We did not ob-

serve any localhost or LAN network traffic over IPv6 though, so subsequent discussion is

exclusively for IPv4.

For landing pages of Tranco top 100K domains, we first present the results from the

dataset measured in 2020, and then compare our findings to those from the 2021 top 100K

measurements. As mentioned in section 5.1.2, domains in the Tranco snapshots used for

the two measurements overlap extensively, and many findings remained consistent. Thus,
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for the 2021 top 100K measurements, we focus on highlighting the changes observed. We

additionally characterize our observations about malicious webpages in comparison to the

top sites.

5.2.1 RQ1: Which Websites are Generating Local Network Traffic?

During our first measurement of sites from the Tranco top 100K in 2020, we found a total

of 107 sites making localhost requests (as listed in Table 5.3 and Table 5.11) and 9 sites

generating LAN requests (as shown in Table 5.4), with no overlap between the two sets

of sites. These sites account for 0.12% of the ones successfully crawled, indicating that

local network activity on websites is not currently widespread. However, such activity

does occur on a non-trivial set of websites.

Similarly, in our 2021 top 100K measurements, we observed 82 sites making localhost

requests (as listed in Table 5.5) and 8 sites generating LAN requests (as shown in Table 5.6),

with again no overlap between the two sets of sites. Out of the 82 sites generating localhost

requests, 19 sites were crawled in 2020 but were not observed as generating such traffic,

whereas 21 sites were not crawled in 2020 (as their domains were not listed in the top

100K). The remaining sites exhibited the same behavior in both measurements. For the

sites generating LAN requests, only one site was found performing LAN requests in both

2020 and 2021, while the others from 2020 stopped in 2021.

Behavior Across OSes. We observe that the set of websites generating localhost traffic

is not uniform across OSes. As shown in Figure 5.2a, during the 2020 top 100K crawl,

we found 92 sites (86%) generating localhost requests when on Windows, compared to 54
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Table 5.3: Summary of website localhost requests (2020 crawl).

Domains marked with an asterisk (*) did not make
localhost requests during the 2021 top 100K crawl.

(a) For Fraud Detection.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Ports Paths OS

W L M

Fraud
Detection

105-
45156

ebay.{at, ca, ch, co.uk, com, com.au,
com.my, com.sg, de, es, fr, ie, in, it, nl,

ph, pl, us}

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/

✓

1251 fidelity.com ✓
1289-
7907 citi{.com, bank.com, bankonline.com}* ✓

5680 marktplaats.nl* ✓
7441 betfair.com ✓
13119-
57251 tiaa{.org, -cref.org}* ✓

13901 2dehands.be* ✓
25990 santanderbank.com ✓
29104 ameriprise.com ✓
34251 commoncause.org* ✓
45228 ctfs.com* ✓
50853 2ememain.be* ✓
90641 highlow.net ✓
97182 metagenics.com ✓

Bot
Detection

8608 sbi.co.in*

http

4444,
4653,
5555,

7054-55,
9515,
17556

/

✓
25881 cnes.fr* ✓
27491 din.de* ✓
32114 csob.cz* ✓
48803 anaf.ro* ✓
55267 data.gov.in* ✓
55852 allegiantair.com* ✓
58948 tmdn.org* ✓
65955 beuth.de* ✓
99638 bank.sbi* ✓

Native
Application

5370 faceit.com ws 28337 / ✓ ✓ ✓
23219 cponline.pw (-) ws 6463-72 /?v=1 ✓ ✓ ✓
29301-
77550

samsungcard{.com, .co.kr} wss 10531, 31027, 31029 / ✓ ✓ ✓
https 14440-9 /?code=*&dummy=* ✓ ✓ ✓

36141 gamehouse.com* http 12071-72, 17021,
27021

/v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

47690 games.lol ws 60202 /check ✓ ✓
57008 zylom.com

http

12071, 17021 /v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

74089 iwin.com 2080-82 /version?_=* ✓ ✓
77134 screenleap.com (-) 5320 /status, /*/up ✓ ✓ ✓
88902 acestream.me (-) 6878 /webui/api/service ✓ ✓ ✓
91904 trustdice.win 50005, 51505, 53005,

54505, 56005
/, /socket.io ✓ ✓ ✓

98789 runeline.com (-) ws 6463-72 /?v=1 ✓ ✓ ✓

Unknown

244 hola.org

http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,

3306, 3479, 4244, 5037, 5242, 5601,

5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672,

23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓
78456 usaonlineclassifieds.com* ws 2687, 26876 / ✓
84569 usnetads.com* ✓

Table 5: Summary of website localhost requests found during the 2020 top 100K crawl. Operating Systems are Windows (W),
Linux (L) and Mac (M). Domains marked with an asterisk (*) did not make localhost requests during the 2021 top 100K crawl.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Ports Paths OS

W L M

Fraud
Detection

105-
45156

ebay.{at, ca, ch, co.uk, com, com.au,
com.my, com.sg, de, es, fr, ie, in, it, nl,

ph, pl, us}

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/

✓

1251 fidelity.com ✓
1289-
7907 citi{.com, bank.com, bankonline.com}* ✓

5680 marktplaats.nl* ✓
7441 betfair.com ✓
13119-
57251 tiaa{.org, -cref.org}* ✓

13901 2dehands.be* ✓
25990 santanderbank.com ✓
29104 ameriprise.com ✓
34251 commoncause.org* ✓
45228 ctfs.com* ✓
50853 2ememain.be* ✓
90641 highlow.net ✓
97182 metagenics.com ✓

Bot
Detection

8608 sbi.co.in*

http

4444,
4653,
5555,

7054-55,
9515,
17556

/

✓
25881 cnes.fr* ✓
27491 din.de* ✓
32114 csob.cz* ✓
48803 anaf.ro* ✓
55267 data.gov.in* ✓
55852 allegiantair.com* ✓
58948 tmdn.org* ✓
65955 beuth.de* ✓
99638 bank.sbi* ✓

Native
Application

5370 faceit.com ws 28337 / ✓ ✓ ✓
23219 cponline.pw (-) ws 6463-72 /?v=1 ✓ ✓ ✓
29301-
77550

samsungcard{.com, .co.kr} wss 10531, 31027, 31029 / ✓ ✓ ✓
https 14440-9 /?code=*&dummy=* ✓ ✓ ✓

36141 gamehouse.com* http 12071-72, 17021,
27021

/v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

47690 games.lol ws 60202 /check ✓ ✓
57008 zylom.com

http

12071, 17021 /v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

74089 iwin.com 2080-82 /version?_=* ✓ ✓
77134 screenleap.com (-) 5320 /status, /*/up ✓ ✓ ✓
88902 acestream.me (-) 6878 /webui/api/service ✓ ✓ ✓
91904 trustdice.win 50005, 51505, 53005,

54505, 56005
/, /socket.io ✓ ✓ ✓

98789 runeline.com (-) ws 6463-72 /?v=1 ✓ ✓ ✓

Unknown

244 hola.org

http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,

3306, 3479, 4244, 5037, 5242, 5601,

5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672,

23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓
78456 usaonlineclassifieds.com* ws 2687, 26876 / ✓
84569 usnetads.com* ✓

Table 5: Summary of website localhost requests found during the 2020 top 100K crawl. Operating Systems are Windows (W),
Linux (L) and Mac (M). Domains marked with an asterisk (*) did not make localhost requests during the 2021 top 100K crawl.

(b) For Bot Detection.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Ports Paths OS

W L M

Fraud
Detection

105-
45156

ebay.{at, ca, ch, co.uk, com, com.au,
com.my, com.sg, de, es, fr, ie, in, it, nl,

ph, pl, us}

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/

✓

1251 fidelity.com ✓
1289-
7907 citi{.com, bank.com, bankonline.com}* ✓

5680 marktplaats.nl* ✓
7441 betfair.com ✓
13119-
57251 tiaa{.org, -cref.org}* ✓

13901 2dehands.be* ✓
25990 santanderbank.com ✓
29104 ameriprise.com ✓
34251 commoncause.org* ✓
45228 ctfs.com* ✓
50853 2ememain.be* ✓
90641 highlow.net ✓
97182 metagenics.com ✓

Bot
Detection

8608 sbi.co.in*

http

4444,
4653,
5555,

7054-55,
9515,
17556

/

✓
25881 cnes.fr* ✓
27491 din.de* ✓
32114 csob.cz* ✓
48803 anaf.ro* ✓
55267 data.gov.in* ✓
55852 allegiantair.com* ✓
58948 tmdn.org* ✓
65955 beuth.de* ✓
99638 bank.sbi* ✓

Native
Application

5370 faceit.com ws 28337 / ✓ ✓ ✓
23219 cponline.pw (-) ws 6463-72 /?v=1 ✓ ✓ ✓
29301-
77550

samsungcard{.com, .co.kr} wss 10531, 31027, 31029 / ✓ ✓ ✓
https 14440-9 /?code=*&dummy=* ✓ ✓ ✓

36141 gamehouse.com* http 12071-72, 17021,
27021

/v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

47690 games.lol ws 60202 /check ✓ ✓
57008 zylom.com

http

12071, 17021 /v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

74089 iwin.com 2080-82 /version?_=* ✓ ✓
77134 screenleap.com (-) 5320 /status, /*/up ✓ ✓ ✓
88902 acestream.me (-) 6878 /webui/api/service ✓ ✓ ✓
91904 trustdice.win 50005, 51505, 53005,

54505, 56005
/, /socket.io ✓ ✓ ✓

98789 runeline.com (-) ws 6463-72 /?v=1 ✓ ✓ ✓

Unknown

244 hola.org

http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,

3306, 3479, 4244, 5037, 5242, 5601,

5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672,

23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓
78456 usaonlineclassifieds.com* ws 2687, 26876 / ✓
84569 usnetads.com* ✓

Table 5: Summary of website localhost requests found during the 2020 top 100K crawl. Operating Systems are Windows (W),
Linux (L) and Mac (M). Domains marked with an asterisk (*) did not make localhost requests during the 2021 top 100K crawl.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Ports Paths OS

W L M

Fraud
Detection

105-
45156

ebay.{at, ca, ch, co.uk, com, com.au,
com.my, com.sg, de, es, fr, ie, in, it, nl,

ph, pl, us}

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/

✓

1251 fidelity.com ✓
1289-
7907 citi{.com, bank.com, bankonline.com}* ✓

5680 marktplaats.nl* ✓
7441 betfair.com ✓
13119-
57251 tiaa{.org, -cref.org}* ✓

13901 2dehands.be* ✓
25990 santanderbank.com ✓
29104 ameriprise.com ✓
34251 commoncause.org* ✓
45228 ctfs.com* ✓
50853 2ememain.be* ✓
90641 highlow.net ✓
97182 metagenics.com ✓

Bot
Detection

8608 sbi.co.in*

http

4444,
4653,
5555,

7054-55,
9515,
17556

/

✓
25881 cnes.fr* ✓
27491 din.de* ✓
32114 csob.cz* ✓
48803 anaf.ro* ✓
55267 data.gov.in* ✓
55852 allegiantair.com* ✓
58948 tmdn.org* ✓
65955 beuth.de* ✓
99638 bank.sbi* ✓

Native
Application

5370 faceit.com ws 28337 / ✓ ✓ ✓
23219 cponline.pw (-) ws 6463-72 /?v=1 ✓ ✓ ✓
29301-
77550

samsungcard{.com, .co.kr} wss 10531, 31027, 31029 / ✓ ✓ ✓
https 14440-9 /?code=*&dummy=* ✓ ✓ ✓

36141 gamehouse.com* http 12071-72, 17021,
27021

/v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

47690 games.lol ws 60202 /check ✓ ✓
57008 zylom.com

http

12071, 17021 /v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

74089 iwin.com 2080-82 /version?_=* ✓ ✓
77134 screenleap.com (-) 5320 /status, /*/up ✓ ✓ ✓
88902 acestream.me (-) 6878 /webui/api/service ✓ ✓ ✓
91904 trustdice.win 50005, 51505, 53005,

54505, 56005
/, /socket.io ✓ ✓ ✓

98789 runeline.com (-) ws 6463-72 /?v=1 ✓ ✓ ✓

Unknown

244 hola.org

http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,

3306, 3479, 4244, 5037, 5242, 5601,

5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672,

23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓
78456 usaonlineclassifieds.com* ws 2687, 26876 / ✓
84569 usnetads.com* ✓

Table 5: Summary of website localhost requests found during the 2020 top 100K crawl. Operating Systems are Windows (W),
Linux (L) and Mac (M). Domains marked with an asterisk (*) did not make localhost requests during the 2021 top 100K crawl.

sites (50%) for both Linux and Mac. Note though that the set of 54 sites for Linux and

Mac are not equivalent, with 5 sites generating activity on Mac but not Linux, and 5 other

sites active for Linux but not Mac. Overall, only 41 sites (38%) behaved equivalently on

all three OSes. While few sites produced localhost traffic exclusively on Mac (5 sites) and

Linux (2 sites), 48 sites (45%) did so on Windows 10, which suggests a degree of targeting
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Table 5.3: Summary of website localhost requests (2020 crawl) contd.

(c) To communicate with Native Applications.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Ports Paths OS

W L M

Fraud
Detection

105-
45156

ebay.{at, ca, ch, co.uk, com, com.au,
com.my, com.sg, de, es, fr, ie, in, it, nl,

ph, pl, us}

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/

✓

1251 fidelity.com ✓
1289-
7907 citi{.com, bank.com, bankonline.com}* ✓

5680 marktplaats.nl* ✓
7441 betfair.com ✓
13119-
57251 tiaa{.org, -cref.org}* ✓

13901 2dehands.be* ✓
25990 santanderbank.com ✓
29104 ameriprise.com ✓
34251 commoncause.org* ✓
45228 ctfs.com* ✓
50853 2ememain.be* ✓
90641 highlow.net ✓
97182 metagenics.com ✓

Bot
Detection

8608 sbi.co.in*

http

4444,
4653,
5555,

7054-55,
9515,
17556

/

✓
25881 cnes.fr* ✓
27491 din.de* ✓
32114 csob.cz* ✓
48803 anaf.ro* ✓
55267 data.gov.in* ✓
55852 allegiantair.com* ✓
58948 tmdn.org* ✓
65955 beuth.de* ✓
99638 bank.sbi* ✓

Native
Application

5370 faceit.com ws 28337 / ✓ ✓ ✓
23219 cponline.pw (-) ws 6463-72 /?v=1 ✓ ✓ ✓
29301-
77550

samsungcard{.com, .co.kr} wss 10531, 31027, 31029 / ✓ ✓ ✓
https 14440-9 /?code=*&dummy=* ✓ ✓ ✓

36141 gamehouse.com* http 12071-72, 17021,
27021

/v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

47690 games.lol ws 60202 /check ✓ ✓
57008 zylom.com

http

12071, 17021 /v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

74089 iwin.com 2080-82 /version?_=* ✓ ✓
77134 screenleap.com (-) 5320 /status, /*/up ✓ ✓ ✓
88902 acestream.me (-) 6878 /webui/api/service ✓ ✓ ✓
91904 trustdice.win 50005, 51505, 53005,

54505, 56005
/, /socket.io ✓ ✓ ✓

98789 runeline.com (-) ws 6463-72 /?v=1 ✓ ✓ ✓

Unknown

244 hola.org

http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,

3306, 3479, 4244, 5037, 5242, 5601,

5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672,

23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓
78456 usaonlineclassifieds.com* ws 2687, 26876 / ✓
84569 usnetads.com* ✓

Table 5: Summary of website localhost requests found during the 2020 top 100K crawl. Operating Systems are Windows (W),
Linux (L) and Mac (M). Domains marked with an asterisk (*) did not make localhost requests during the 2021 top 100K crawl.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Ports Paths OS

W L M

Fraud
Detection

105-
45156

ebay.{at, ca, ch, co.uk, com, com.au,
com.my, com.sg, de, es, fr, ie, in, it, nl,

ph, pl, us}

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/

✓

1251 fidelity.com ✓
1289-
7907 citi{.com, bank.com, bankonline.com}* ✓

5680 marktplaats.nl* ✓
7441 betfair.com ✓
13119-
57251 tiaa{.org, -cref.org}* ✓

13901 2dehands.be* ✓
25990 santanderbank.com ✓
29104 ameriprise.com ✓
34251 commoncause.org* ✓
45228 ctfs.com* ✓
50853 2ememain.be* ✓
90641 highlow.net ✓
97182 metagenics.com ✓

Bot
Detection

8608 sbi.co.in*

http

4444,
4653,
5555,

7054-55,
9515,
17556

/

✓
25881 cnes.fr* ✓
27491 din.de* ✓
32114 csob.cz* ✓
48803 anaf.ro* ✓
55267 data.gov.in* ✓
55852 allegiantair.com* ✓
58948 tmdn.org* ✓
65955 beuth.de* ✓
99638 bank.sbi* ✓

Native
Application

5370 faceit.com ws 28337 / ✓ ✓ ✓
23219 cponline.pw (-) ws 6463-72 /?v=1 ✓ ✓ ✓
29301-
77550

samsungcard{.com, .co.kr} wss 10531, 31027, 31029 / ✓ ✓ ✓
https 14440-9 /?code=*&dummy=* ✓ ✓ ✓

36141 gamehouse.com* http 12071-72, 17021,
27021

/v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

47690 games.lol ws 60202 /check ✓ ✓
57008 zylom.com

http

12071, 17021 /v1/init.json?api_-
port=*&query_id=*

✓ ✓ ✓

74089 iwin.com 2080-82 /version?_=* ✓ ✓
77134 screenleap.com (-) 5320 /status, /*/up ✓ ✓ ✓
88902 acestream.me (-) 6878 /webui/api/service ✓ ✓ ✓
91904 trustdice.win 50005, 51505, 53005,

54505, 56005
/, /socket.io ✓ ✓ ✓

98789 runeline.com (-) ws 6463-72 /?v=1 ✓ ✓ ✓

Unknown

244 hola.org

http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,

3306, 3479, 4244, 5037, 5242, 5601,

5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672,

23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓
78456 usaonlineclassifieds.com* ws 2687, 26876 / ✓
84569 usnetads.com* ✓

Table 5: Summary of website localhost requests found during the 2020 top 100K crawl. Operating Systems are Windows (W),
Linux (L) and Mac (M). Domains marked with an asterisk (*) did not make localhost requests during the 2021 top 100K crawl.

(d) For unknown reasons.

Rank
(↓) Domain Protocol Ports Paths OS

W L M

244 hola.org
http

6880-9 /*.json ✓ ✓ ✓

21246 wowreality.info

1080, 1194, 2375, 2376, 3000, 3128,
3306, 3479, 4244, 5037, 5242, 5601,
5938, 6379, 8332, 8333, 8530, 9000,

9050, 9150, 9785, 11211, 15672, 23399, 27017

/ ✓ ✓ ✓

62048 svd-cdn.com 6880-9 /*.json ✓ ✓ ✓

78456 usaonlineclassifieds.com*
ws 2687, 26876 /

✓

84569 usnetads.com* ✓

towards Windows users (explored further in section 5.2.3).

In our 2021 top 100K measurements, we observed that behavior on Windows and Linux

was similar, with 47 sites behaving equivalently on both OSes. For malicious webpages,

as seen in Figure 5.2b, we also find that localhost traffic is not observed uniformly across

OSes, although here, Linux elicited localhost behavior on more webpages. Similarly, we

found that LAN activity on websites is also not consistent across OSes (although the pop-

ulation sizes are small enough to prevent identifying clear OS skew).
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Table 5.5: Summary of website localhost requests (2021 crawl).

(a) For Fraud Detection.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank (↓) Domain Protocol Ports Paths OS
W L

Fraud
Detection

2912 cibc.com

wss

3389, 5279,
5900-03,

5931, 5939,
5944, 5950,
6039-40,

63333, 7070

/

✓
8173 betfair.com (+) ✓
10679 highlow.com ✓
28370 moneybookers.com ✓
31170 ebay.com.hk ✓
64012 marks.com ✓

Native
Application

592 iqiyi.com

http 16422-23 /get_client_ver?*

✓ ✓
7664 qy.net ✓ ✓
10966 qiyi.com ✓ ✓
12350 iqiyipic.com ✓ ✓
15581 ppstream.com ✓ ✓
34989 ppsimg.com (+) ✓ ✓
44280 soliqservis.uz (+) wss 64443 /service/cryptapi ✓ ✓
75083 nfstar.net (+)

http 28317,
36759 /get_thunder_version/

✓ ✓
80108 9ekk.com (+) ✓ ✓
87274 somode.com (+) ✓ ✓
82814 mcgeeandco.com (+) https 4000 /socket.io/? ✓ ✓
86605 71.am (+) http 16422-23 /get_client_ver?* ✓ ✓
94270 didox.uz (+) wss 64443 /service/cryptapi ✓ ✓
96284 gnway.com (+) ws 38681-87 / ✓

Developer
Errors

5154 phonearena.com

http

1500 /floor-domains ✓ ✓
5331 madmimi.com 5555 /2.1.2/sockjs.min.js ✓

14951 nursingworld.org
80

∼4af7b9/globalassets/
images/*.jpg ✓

21280 ums.ac.id /ums-baru/wp-content/* ✓ ✓
25940 zee.co.ao (+) /industrialwp/wp-content/* ✓ ✓
37323 raovatnailsalon.com (+) https 443 /raovatnailsalon/wp-content/* ✓ ✓
42107 panduit.com http 4502 /apps/panduit/clientlibs/*.js ✓
45497 internetworld.de https 443 / ✓ ✓
47861 mcknights.com 9988 /livereload.js ✓
50650 san-servis.com

http 80
/vina/vina_febris/images/* ✓ ✓

54756 postfallsonthego.com (+) /magazon/magazon-wp/
wp-content/uploads/* ✓ ✓

55755 wealthcareportal.com (+) /NonExistentImage48762.gif ✓ ✓
55477 lited.com 110066 /getversionjpg?hash=* ✓
68872 workpermit.com https 6081 /news-ticker.json ✓ ✓
75989 ethiopianreporterjobs.co (+) 443 /wp-content/uploads/* ✓ ✓
77974 macroaxis.com (+)

http
8080 /img/icons/search.png ✓ ✓

83256 adfontesmedia.com (+) 8888
/adfontesmedia/wp-content/

uploads/* ✓ ✓

84378 charityvillage.com (+) /core/js/api/web-rules ✓ ✓
90632 showfx.ro (+) https 443 /wordpress/x-street/wp-content/* ✓ ✓
98402 xaydungtrangtrinoithat.com (+) /wp-content/uploads/* ✓ ✓

Table 7: Summary of new website localhost requests seen in the 2021 top 100K crawl. (+) represents a domain that was not
present in the 2020 top 100K list snapshot (and thus was not previously crawled). Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

number of websites request a URL path that contains /wp-content
/uploads/, suggesting that the requested resource is a file uploaded
to the local WordPress installation. Upon manual investigation, we
do not find any evidence suggesting intentional localhost or LAN
communication across these websites, and we believe that these
resource requests are unintentional and remnants of when the web-
sites were being developed and tested. Appendix B explores the
different occurrences across websites in more detail.

Similar cases were found in both the 2021 top 100K crawl (as
shown in Tables 7 and 10) and our crawl of malicious webpages
(Tables 8 and 9). Formalicious pages, we believe that either attackers
made such developer errors on their own attack sites, or more likely,
the attackers compromised benign websites exhibiting these errors.
In total, we attribute more than 90% of the localhost activity on
malicious webpages to this behavior class.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank (↓) Domain Protocol Ports Paths OS
W L

Fraud
Detection

2912 cibc.com

wss

3389, 5279,
5900-03,

5931, 5939,
5944, 5950,
6039-40,

63333, 7070

/

✓
8173 betfair.com (+) ✓
10679 highlow.com ✓
28370 moneybookers.com ✓
31170 ebay.com.hk ✓
64012 marks.com ✓

Native
Application

592 iqiyi.com

http 16422-23 /get_client_ver?*

✓ ✓
7664 qy.net ✓ ✓
10966 qiyi.com ✓ ✓
12350 iqiyipic.com ✓ ✓
15581 ppstream.com ✓ ✓
34989 ppsimg.com (+) ✓ ✓
44280 soliqservis.uz (+) wss 64443 /service/cryptapi ✓ ✓
75083 nfstar.net (+)

http 28317,
36759 /get_thunder_version/

✓ ✓
80108 9ekk.com (+) ✓ ✓
87274 somode.com (+) ✓ ✓
82814 mcgeeandco.com (+) https 4000 /socket.io/? ✓ ✓
86605 71.am (+) http 16422-23 /get_client_ver?* ✓ ✓
94270 didox.uz (+) wss 64443 /service/cryptapi ✓ ✓
96284 gnway.com (+) ws 38681-87 / ✓

Developer
Errors

5154 phonearena.com

http

1500 /floor-domains ✓ ✓
5331 madmimi.com 5555 /2.1.2/sockjs.min.js ✓

14951 nursingworld.org
80

∼4af7b9/globalassets/
images/*.jpg ✓

21280 ums.ac.id /ums-baru/wp-content/* ✓ ✓
25940 zee.co.ao (+) /industrialwp/wp-content/* ✓ ✓
37323 raovatnailsalon.com (+) https 443 /raovatnailsalon/wp-content/* ✓ ✓
42107 panduit.com http 4502 /apps/panduit/clientlibs/*.js ✓
45497 internetworld.de https 443 / ✓ ✓
47861 mcknights.com 9988 /livereload.js ✓
50650 san-servis.com

http 80
/vina/vina_febris/images/* ✓ ✓

54756 postfallsonthego.com (+) /magazon/magazon-wp/
wp-content/uploads/* ✓ ✓

55755 wealthcareportal.com (+) /NonExistentImage48762.gif ✓ ✓
55477 lited.com 110066 /getversionjpg?hash=* ✓
68872 workpermit.com https 6081 /news-ticker.json ✓ ✓
75989 ethiopianreporterjobs.co (+) 443 /wp-content/uploads/* ✓ ✓
77974 macroaxis.com (+)

http
8080 /img/icons/search.png ✓ ✓

83256 adfontesmedia.com (+) 8888
/adfontesmedia/wp-content/

uploads/* ✓ ✓

84378 charityvillage.com (+) /core/js/api/web-rules ✓ ✓
90632 showfx.ro (+) https 443 /wordpress/x-street/wp-content/* ✓ ✓
98402 xaydungtrangtrinoithat.com (+) /wp-content/uploads/* ✓ ✓

Table 7: Summary of new website localhost requests seen in the 2021 top 100K crawl. (+) represents a domain that was not
present in the 2020 top 100K list snapshot (and thus was not previously crawled). Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

number of websites request a URL path that contains /wp-content
/uploads/, suggesting that the requested resource is a file uploaded
to the local WordPress installation. Upon manual investigation, we
do not find any evidence suggesting intentional localhost or LAN
communication across these websites, and we believe that these
resource requests are unintentional and remnants of when the web-
sites were being developed and tested. Appendix B explores the
different occurrences across websites in more detail.

Similar cases were found in both the 2021 top 100K crawl (as
shown in Tables 7 and 10) and our crawl of malicious webpages
(Tables 8 and 9). Formalicious pages, we believe that either attackers
made such developer errors on their own attack sites, or more likely,
the attackers compromised benign websites exhibiting these errors.
In total, we attribute more than 90% of the localhost activity on
malicious webpages to this behavior class.

(b) To communicate with native applications.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank (↓) Domain Protocol Ports Paths OS
W L

Fraud
Detection

2912 cibc.com

wss

3389, 5279,
5900-03,

5931, 5939,
5944, 5950,
6039-40,

63333, 7070

/

✓
8173 betfair.com (+) ✓
10679 highlow.com ✓
28370 moneybookers.com ✓
31170 ebay.com.hk ✓
64012 marks.com ✓

Native
Application

592 iqiyi.com

http 16422-23 /get_client_ver?*

✓ ✓
7664 qy.net ✓ ✓
10966 qiyi.com ✓ ✓
12350 iqiyipic.com ✓ ✓
15581 ppstream.com ✓ ✓
34989 ppsimg.com (+) ✓ ✓
44280 soliqservis.uz (+) wss 64443 /service/cryptapi ✓ ✓
75083 nfstar.net (+)

http 28317,
36759 /get_thunder_version/

✓ ✓
80108 9ekk.com (+) ✓ ✓
87274 somode.com (+) ✓ ✓
82814 mcgeeandco.com (+) https 4000 /socket.io/? ✓ ✓
86605 71.am (+) http 16422-23 /get_client_ver?* ✓ ✓
94270 didox.uz (+) wss 64443 /service/cryptapi ✓ ✓
96284 gnway.com (+) ws 38681-87 / ✓

Developer
Errors

5154 phonearena.com

http

1500 /floor-domains ✓ ✓
5331 madmimi.com 5555 /2.1.2/sockjs.min.js ✓

14951 nursingworld.org
80

∼4af7b9/globalassets/
images/*.jpg ✓

21280 ums.ac.id /ums-baru/wp-content/* ✓ ✓
25940 zee.co.ao (+) /industrialwp/wp-content/* ✓ ✓
37323 raovatnailsalon.com (+) https 443 /raovatnailsalon/wp-content/* ✓ ✓
42107 panduit.com http 4502 /apps/panduit/clientlibs/*.js ✓
45497 internetworld.de https 443 / ✓ ✓
47861 mcknights.com 9988 /livereload.js ✓
50650 san-servis.com

http 80
/vina/vina_febris/images/* ✓ ✓

54756 postfallsonthego.com (+) /magazon/magazon-wp/
wp-content/uploads/* ✓ ✓

55755 wealthcareportal.com (+) /NonExistentImage48762.gif ✓ ✓
55477 lited.com 110066 /getversionjpg?hash=* ✓
68872 workpermit.com https 6081 /news-ticker.json ✓ ✓
75989 ethiopianreporterjobs.co (+) 443 /wp-content/uploads/* ✓ ✓
77974 macroaxis.com (+)

http
8080 /img/icons/search.png ✓ ✓

83256 adfontesmedia.com (+) 8888
/adfontesmedia/wp-content/

uploads/* ✓ ✓

84378 charityvillage.com (+) /core/js/api/web-rules ✓ ✓
90632 showfx.ro (+) https 443 /wordpress/x-street/wp-content/* ✓ ✓
98402 xaydungtrangtrinoithat.com (+) /wp-content/uploads/* ✓ ✓

Table 7: Summary of new website localhost requests seen in the 2021 top 100K crawl. (+) represents a domain that was not
present in the 2020 top 100K list snapshot (and thus was not previously crawled). Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

number of websites request a URL path that contains /wp-content
/uploads/, suggesting that the requested resource is a file uploaded
to the local WordPress installation. Upon manual investigation, we
do not find any evidence suggesting intentional localhost or LAN
communication across these websites, and we believe that these
resource requests are unintentional and remnants of when the web-
sites were being developed and tested. Appendix B explores the
different occurrences across websites in more detail.

Similar cases were found in both the 2021 top 100K crawl (as
shown in Tables 7 and 10) and our crawl of malicious webpages
(Tables 8 and 9). Formalicious pages, we believe that either attackers
made such developer errors on their own attack sites, or more likely,
the attackers compromised benign websites exhibiting these errors.
In total, we attribute more than 90% of the localhost activity on
malicious webpages to this behavior class.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank (↓) Domain Protocol Ports Paths OS
W L

Fraud
Detection

2912 cibc.com

wss

3389, 5279,
5900-03,

5931, 5939,
5944, 5950,
6039-40,

63333, 7070

/

✓
8173 betfair.com (+) ✓
10679 highlow.com ✓
28370 moneybookers.com ✓
31170 ebay.com.hk ✓
64012 marks.com ✓

Native
Application

592 iqiyi.com

http 16422-23 /get_client_ver?*

✓ ✓
7664 qy.net ✓ ✓
10966 qiyi.com ✓ ✓
12350 iqiyipic.com ✓ ✓
15581 ppstream.com ✓ ✓
34989 ppsimg.com (+) ✓ ✓
44280 soliqservis.uz (+) wss 64443 /service/cryptapi ✓ ✓
75083 nfstar.net (+)

http 28317,
36759 /get_thunder_version/

✓ ✓
80108 9ekk.com (+) ✓ ✓
87274 somode.com (+) ✓ ✓
82814 mcgeeandco.com (+) https 4000 /socket.io/? ✓ ✓
86605 71.am (+) http 16422-23 /get_client_ver?* ✓ ✓
94270 didox.uz (+) wss 64443 /service/cryptapi ✓ ✓
96284 gnway.com (+) ws 38681-87 / ✓

Developer
Errors

5154 phonearena.com

http

1500 /floor-domains ✓ ✓
5331 madmimi.com 5555 /2.1.2/sockjs.min.js ✓

14951 nursingworld.org
80

∼4af7b9/globalassets/
images/*.jpg ✓

21280 ums.ac.id /ums-baru/wp-content/* ✓ ✓
25940 zee.co.ao (+) /industrialwp/wp-content/* ✓ ✓
37323 raovatnailsalon.com (+) https 443 /raovatnailsalon/wp-content/* ✓ ✓
42107 panduit.com http 4502 /apps/panduit/clientlibs/*.js ✓
45497 internetworld.de https 443 / ✓ ✓
47861 mcknights.com 9988 /livereload.js ✓
50650 san-servis.com

http 80
/vina/vina_febris/images/* ✓ ✓

54756 postfallsonthego.com (+) /magazon/magazon-wp/
wp-content/uploads/* ✓ ✓

55755 wealthcareportal.com (+) /NonExistentImage48762.gif ✓ ✓
55477 lited.com 110066 /getversionjpg?hash=* ✓
68872 workpermit.com https 6081 /news-ticker.json ✓ ✓
75989 ethiopianreporterjobs.co (+) 443 /wp-content/uploads/* ✓ ✓
77974 macroaxis.com (+)

http
8080 /img/icons/search.png ✓ ✓

83256 adfontesmedia.com (+) 8888
/adfontesmedia/wp-content/

uploads/* ✓ ✓

84378 charityvillage.com (+) /core/js/api/web-rules ✓ ✓
90632 showfx.ro (+) https 443 /wordpress/x-street/wp-content/* ✓ ✓
98402 xaydungtrangtrinoithat.com (+) /wp-content/uploads/* ✓ ✓

Table 7: Summary of new website localhost requests seen in the 2021 top 100K crawl. (+) represents a domain that was not
present in the 2020 top 100K list snapshot (and thus was not previously crawled). Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

number of websites request a URL path that contains /wp-content
/uploads/, suggesting that the requested resource is a file uploaded
to the local WordPress installation. Upon manual investigation, we
do not find any evidence suggesting intentional localhost or LAN
communication across these websites, and we believe that these
resource requests are unintentional and remnants of when the web-
sites were being developed and tested. Appendix B explores the
different occurrences across websites in more detail.

Similar cases were found in both the 2021 top 100K crawl (as
shown in Tables 7 and 10) and our crawl of malicious webpages
(Tables 8 and 9). Formalicious pages, we believe that either attackers
made such developer errors on their own attack sites, or more likely,
the attackers compromised benign websites exhibiting these errors.
In total, we attribute more than 90% of the localhost activity on
malicious webpages to this behavior class.

2

Mac
5 48
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38
41

(a) 2020 top 100K crawl

41
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4

104
70

(b) Malicious webpages

Figure 5.2: Overlap in localhost activity for sites across OSes.

Website Rankings. We also investigate whether the population of websites that make

local requests is skewed based on site popularity. In Figure 5.3, we plot the CDFs of the
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(c) Summary of website localhost requests (2021 crawl) contd.

(d) As a result of developer errors.
Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank (↓) Domain Protocol Ports Paths OS
W L

Fraud
Detection

2912 cibc.com

wss

3389, 5279,
5900-03,

5931, 5939,
5944, 5950,
6039-40,

63333, 7070

/

✓
8173 betfair.com (+) ✓
10679 highlow.com ✓
28370 moneybookers.com ✓
31170 ebay.com.hk ✓
64012 marks.com ✓

Native
Application

592 iqiyi.com

http 16422-23 /get_client_ver?*

✓ ✓
7664 qy.net ✓ ✓
10966 qiyi.com ✓ ✓
12350 iqiyipic.com ✓ ✓
15581 ppstream.com ✓ ✓
34989 ppsimg.com (+) ✓ ✓
44280 soliqservis.uz (+) wss 64443 /service/cryptapi ✓ ✓
75083 nfstar.net (+)

http 28317,
36759 /get_thunder_version/

✓ ✓
80108 9ekk.com (+) ✓ ✓
87274 somode.com (+) ✓ ✓
82814 mcgeeandco.com (+) https 4000 /socket.io/? ✓ ✓
86605 71.am (+) http 16422-23 /get_client_ver?* ✓ ✓
94270 didox.uz (+) wss 64443 /service/cryptapi ✓ ✓
96284 gnway.com (+) ws 38681-87 / ✓

Developer
Errors

5154 phonearena.com

http

1500 /floor-domains ✓ ✓
5331 madmimi.com 5555 /2.1.2/sockjs.min.js ✓

14951 nursingworld.org
80

∼4af7b9/globalassets/
images/*.jpg ✓

21280 ums.ac.id /ums-baru/wp-content/* ✓ ✓
25940 zee.co.ao (+) /industrialwp/wp-content/* ✓ ✓
37323 raovatnailsalon.com (+) https 443 /raovatnailsalon/wp-content/* ✓ ✓
42107 panduit.com http 4502 /apps/panduit/clientlibs/*.js ✓
45497 internetworld.de https 443 / ✓ ✓
47861 mcknights.com 9988 /livereload.js ✓
50650 san-servis.com

http 80
/vina/vina_febris/images/* ✓ ✓

54756 postfallsonthego.com (+) /magazon/magazon-wp/
wp-content/uploads/* ✓ ✓

55755 wealthcareportal.com (+) /NonExistentImage48762.gif ✓ ✓
55477 lited.com 110066 /getversionjpg?hash=* ✓
68872 workpermit.com https 6081 /news-ticker.json ✓ ✓
75989 ethiopianreporterjobs.co (+) 443 /wp-content/uploads/* ✓ ✓
77974 macroaxis.com (+)

http
8080 /img/icons/search.png ✓ ✓

83256 adfontesmedia.com (+) 8888
/adfontesmedia/wp-content/

uploads/* ✓ ✓

84378 charityvillage.com (+) /core/js/api/web-rules ✓ ✓
90632 showfx.ro (+) https 443 /wordpress/x-street/wp-content/* ✓ ✓
98402 xaydungtrangtrinoithat.com (+) /wp-content/uploads/* ✓ ✓

Table 7: Summary of new website localhost requests seen in the 2021 top 100K crawl. (+) represents a domain that was not
present in the 2020 top 100K list snapshot (and thus was not previously crawled). Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

number of websites request a URL path that contains /wp-content
/uploads/, suggesting that the requested resource is a file uploaded
to the local WordPress installation. Upon manual investigation, we
do not find any evidence suggesting intentional localhost or LAN
communication across these websites, and we believe that these
resource requests are unintentional and remnants of when the web-
sites were being developed and tested. Appendix B explores the
different occurrences across websites in more detail.

Similar cases were found in both the 2021 top 100K crawl (as
shown in Tables 7 and 10) and our crawl of malicious webpages
(Tables 8 and 9). Formalicious pages, we believe that either attackers
made such developer errors on their own attack sites, or more likely,
the attackers compromised benign websites exhibiting these errors.
In total, we attribute more than 90% of the localhost activity on
malicious webpages to this behavior class.

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank (↓) Domain Protocol Ports Paths OS
W L

Fraud
Detection

2912 cibc.com

wss

3389, 5279,
5900-03,

5931, 5939,
5944, 5950,
6039-40,

63333, 7070

/

✓
8173 betfair.com (+) ✓
10679 highlow.com ✓
28370 moneybookers.com ✓
31170 ebay.com.hk ✓
64012 marks.com ✓

Native
Application

592 iqiyi.com

http 16422-23 /get_client_ver?*

✓ ✓
7664 qy.net ✓ ✓
10966 qiyi.com ✓ ✓
12350 iqiyipic.com ✓ ✓
15581 ppstream.com ✓ ✓
34989 ppsimg.com (+) ✓ ✓
44280 soliqservis.uz (+) wss 64443 /service/cryptapi ✓ ✓
75083 nfstar.net (+)

http 28317,
36759 /get_thunder_version/

✓ ✓
80108 9ekk.com (+) ✓ ✓
87274 somode.com (+) ✓ ✓
82814 mcgeeandco.com (+) https 4000 /socket.io/? ✓ ✓
86605 71.am (+) http 16422-23 /get_client_ver?* ✓ ✓
94270 didox.uz (+) wss 64443 /service/cryptapi ✓ ✓
96284 gnway.com (+) ws 38681-87 / ✓

Developer
Errors

5154 phonearena.com

http

1500 /floor-domains ✓ ✓
5331 madmimi.com 5555 /2.1.2/sockjs.min.js ✓

14951 nursingworld.org
80

∼4af7b9/globalassets/
images/*.jpg ✓

21280 ums.ac.id /ums-baru/wp-content/* ✓ ✓
25940 zee.co.ao (+) /industrialwp/wp-content/* ✓ ✓
37323 raovatnailsalon.com (+) https 443 /raovatnailsalon/wp-content/* ✓ ✓
42107 panduit.com http 4502 /apps/panduit/clientlibs/*.js ✓
45497 internetworld.de https 443 / ✓ ✓
47861 mcknights.com 9988 /livereload.js ✓
50650 san-servis.com

http 80
/vina/vina_febris/images/* ✓ ✓

54756 postfallsonthego.com (+) /magazon/magazon-wp/
wp-content/uploads/* ✓ ✓

55755 wealthcareportal.com (+) /NonExistentImage48762.gif ✓ ✓
55477 lited.com 110066 /getversionjpg?hash=* ✓
68872 workpermit.com https 6081 /news-ticker.json ✓ ✓
75989 ethiopianreporterjobs.co (+) 443 /wp-content/uploads/* ✓ ✓
77974 macroaxis.com (+)

http
8080 /img/icons/search.png ✓ ✓

83256 adfontesmedia.com (+) 8888
/adfontesmedia/wp-content/

uploads/* ✓ ✓

84378 charityvillage.com (+) /core/js/api/web-rules ✓ ✓
90632 showfx.ro (+) https 443 /wordpress/x-street/wp-content/* ✓ ✓
98402 xaydungtrangtrinoithat.com (+) /wp-content/uploads/* ✓ ✓

Table 7: Summary of new website localhost requests seen in the 2021 top 100K crawl. (+) represents a domain that was not
present in the 2020 top 100K list snapshot (and thus was not previously crawled). Operating Systems (OS) are Windows (W),
Linux (L) and Mac (M).

number of websites request a URL path that contains /wp-content
/uploads/, suggesting that the requested resource is a file uploaded
to the local WordPress installation. Upon manual investigation, we
do not find any evidence suggesting intentional localhost or LAN
communication across these websites, and we believe that these
resource requests are unintentional and remnants of when the web-
sites were being developed and tested. Appendix B explores the
different occurrences across websites in more detail.

Similar cases were found in both the 2021 top 100K crawl (as
shown in Tables 7 and 10) and our crawl of malicious webpages
(Tables 8 and 9). Formalicious pages, we believe that either attackers
made such developer errors on their own attack sites, or more likely,
the attackers compromised benign websites exhibiting these errors.
In total, we attribute more than 90% of the localhost activity on
malicious webpages to this behavior class.

ranks of the domains whose landing pages were found to be actively generating traffic to

localhost in our 2020 top 100K measurements, across the three OSes. We observe fairly

linear CDF curves, indicating that our detected domains are spread uniformly throughout

the top 100K domains. Notably, there are highly-ranked sites (with millions of users)

that display localhost behavior, such as those listed in Table 5.7. In our 2021 top 100K

measurements, we see a similar distribution, as visible in Figure 5.4. As listed in Table 5.4

and Table 5.6, the ranks of the domains whose landing pages were found making requests

to LAN destinations are also similarly distributed across the top 100K, with the highest site

ranked at 4381 in 2020 and 4847 in 2021. None of the domains belonging to malicious

webpages were found in the Tranco top 100K.
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Table 5.7: Top domains whose landing pages made localhost requests.

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li
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(b) Malicious webpages

Figure 2: For websites generating localhost traffic, we depict the overlap in localhost activity for sites across OSes.
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Figure 3: CDFs of the domain ranks for Tranco top 100K
landing pages generating localhost traffic, across OSes, for
our 2020 measurements.

in 2021. None of the domains belonging to malicious webpages
were found in the Tranco top 100K.

4.2 RQ2: What are the Characteristics of the
Local Network Traffic?

Here we consider what protocols and ports are used by websites
for requests to the local network, and when requests are generated.

Protocols and Ports. Figure 4a depicts the protocols and ports
used in the localhost requests we observed in our 2020 top 100K
measurements, across the three OSes. (Data on individual sites is
listed in Tables 5 and 11.) We observe that the majority (about
60%) of localhost requests on Windows were made using the Se-
cured WebSockets (WSS) protocol, to a set of 14 ports. The use of
WebSockets is interesting as it is not bound by the Same-Origin
Policy, potentially allowing bidirectional network communication.
In comparison, only a quarter of requests on Windows were sent
over HTTP, with an eighth sent over HTTPS (primarily to the de-
fault HTTP(S) ports). Linux and Mac exhibited the opposite pattern,
with 86% of requests sent over HTTP and HTTPS (primarily to the
default ports) for both OSes.

Rank (↓) Windows Rank (↓) Linux and Mac

104 ebay.com 243 hola.org
243 hola.org 5369 faceit.com
429 ebay.de 7699 zakupki.gov.ru*
536 ebay.co.uk 17826 rkn.gov.ru*
932 ebay.com.au 19243 cruze...sulvirtual.com.br*
1250 fidelity.com 21245 wowreality.info
1288 citi.com* 22729 smartcatdesign.net
1843 ebay.it 23218 cponline.pw*
2200 ebay.fr 24739 gamezone.com
2394 ebay.ca 26399 filemail.com

Table 3: Top 10 domains whose landing pages were making
localhost requests in our 2020 top 100K measurements (the
top domains for Linux and Mac are identical). Starred do-
mains were not observed generating such traffic in our 2021
top 100K measurements.

In the 2021 top 100K crawl, as well as the crawl of malicious
webpages (shown in Figure 8 of the Appendix and Figure 4b, respec-
tively), we see largely a subset of the ports and protocols observed
with the 2020 top 100K crawl. We see fewer ports and protocols
in our later measurements due to some changes in the types of
local network activity exhibited by websites, as examined further
in Section 4.3.

For LAN traffic, as shown in Tables 6 and 10, all requests from
top 100K sites (in both the 2020 and 2021 crawls) were made to
either HTTP or HTTPS, using the standard ports. This held true
for most malicious webpages (as seen in Table 9), except for one
site requesting HTTP on port 1080.

Request Timing. Figure 5a depicts the CDFs of the time between
when a landing page is successfully fetched and when we begin
observing localhost requests, across all OSes, for our 2020 top 100K
measurements. We observe that for Linux and Mac, over half of the
localhost requests are initiated within 5 seconds after the landing
page is fetched. For Windows, the median gap is 10 seconds. The
maximum delay is 14 seconds for Mac and 17 seconds for both Linux
and Windows. Similarly, Figure 5b shows the time delay between
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Figure 5.3: CDFs of the domain ranks for top sites generating localhost traffic (2020 crawl).
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Figure 5.4: CDFs of the domain ranks for top sites generating localhost traffic (2021 crawl).
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5.2.2 RQ2: What are the Characteristics of the Local Network Traffic?

Here we consider what protocols and ports are used by websites for requests to the local

network, and when requests are generated.

Protocols and Ports. Figure 5.5a depicts the protocols and ports used in the localhost

requests we observed in our 2020 top 100K measurements, across the three OSes. (Data

on individual sites is listed in Table 5.3 and Table 5.11.) We observe that the majority

(about 60%) of localhost requests on Windows were made using the Secured WebSockets

(WSS) protocol, to a set of 14 ports. The use of WebSockets is interesting as it is not bound

by the Same-Origin Policy, potentially allowing bidirectional network communication. In

comparison, only a quarter of requests on Windows were sent over HTTP, with an eighth

sent over HTTPS (primarily to the default HTTP(S) ports). Linux and Mac exhibited the

opposite pattern, with 86% of requests sent over HTTP and HTTPS (primarily to the default

ports) for both OSes.

In the 2021 top 100K crawl, as well as the crawl of malicious webpages (shown in Fig-

ure 5.6 and Figure 5.5b, respectively), we see largely a subset of the ports and protocols

observed with the 2020 top 100K crawl. We see fewer ports and protocols in our later mea-

surements due to some changes in the types of local network activity exhibited by websites,

as examined further in subsection 5.2.3.

For LAN traffic, as shown in Table 5.4 and Table 5.6, all requests from top 100K sites

(in both the 2020 and 2021 crawls) were made to either HTTP or HTTPS, using the standard

ports. This held true for most malicious webpages (as seen in Table 5.8), except for one

site requesting HTTP on port 1080.

Request Timing. Figure 5.7a depicts the CDFs of the time between when a landing page

is successfully fetched and when we begin observing localhost requests, across all OSes,

for our 2020 top 100K measurements. We observe that for Linux and Mac, over half of
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Figure 5.5: Protocols and ports used for website requests to localhost, across OSes.

Windows
(512)

wss(409)

http
(73)

ht
tp
s

(2
0)

w
s

(1
0)

3389

5279

5900
590159025903

5931

5939

5944

5950

6039

6040
63333 7070

64443
7000
9993

80

16422
8888

16423
28317

36759
6880

6881
6882

6883
6884

6885

6886

6887

6888

6889

8080
1080

1194

1500

2080

2081

2082

2375

2376

3000

3128

3306

4502

5555

8000

9080

11066

12071

17021

50005

51505

53005

54505

56005

56666

443
4000

6081
8000

14440

14441

14442

14443

14444

14445
14446
14447
14448
14449
35729
28337
38681
38684
38687
50005
51505
53005
54505
56005
60202

Linux
(118)

http(89)

https
(21)

w
s

(6
)

w
ss (2
)

80

16422

16423

88
88

28
31
7

30
00

6880
6881

6882

6883

68846885688668876888688980801080
1194
1500
2080
2081
2082
2375
2376
3128
3306
3479
4244
5037

5242

5601

5938

637
9

800
0

833
2

833
3

853
0

90
00

90
50

90
80

91
50

97
85

11
21
1

12
07
1

15
67
2

17
02
1

23
39
9

27
01
7

50
00
5

51
50
5

53
00
5

54
50
5

56
00
5 56666

443 4000
6081
8000

9988
14440

14441
14442

14443

14444

14445

14446

14447

14448

14449

35729

28337

50005

51505

53005

54505
56005

64443

Figure 5.6: Protocols and ports used for website requests to localhost (2021 crawl).

the localhost requests are initiated within 5 seconds after the landing page is fetched. For

Windows, the median gap is 10 seconds. The maximum delay is 14 seconds for Mac and

17 seconds for both Linux and Windows. Similarly, Figure 5.7b shows the time delay

90



between when a landing page is fetched and when we begin observing LAN requests,

across OSes, for our 2020 top 100K measurements. Here, the median delay for all three

OSes is within 5 seconds. The maximum delay is 5 seconds on Windows, 15 seconds on

Mac, and 16 seconds on Linux. These delays reveal that in many cases, the localhost and

LAN traffic generate by websites do not immediately manifest. Our observations remain

roughly consistent over our 2021 top 100K crawl and our crawl of malicious webpages, as

shown in Figure 5.8 and Figure 5.9.
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Figure 5.7: CDFs of time delays for the first local network request (2020 crawl).

5.2.3 RQ3: Why are Websites Making Local Network Requests?

To understand why websites may be generating local traffic, we first manually investigate

each website exhibiting local network activity in our 2020 top 100K measurements, iden-

tifying which elements of the webpages are originating the localhost and LAN requests in

an attempt to determine the underlying reason. We subsequently also compare the observa-

tions with those from the 2021 top 100K crawl as well as the crawl of malicious webpages.

Through our exploration of the 107 websites found making localhost requests in our

2020 top 100K measurements, we identify four main classes of behavior: 1) 36 websites

were scanning localhost ports for fraud detection, 2) 10 websites were conducting bot de-
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Figure 5.8: CDFs of time delays for the first local network request (2021 crawl).
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Figure 5.9: CDFs of time delays for the first local network request (malicious site crawl).

tection, 3) 12 websites were found communicating with native applications, and 4) 44

websites requested localhost resources likely due to developer error. For the 5 remaining

websites, we could not ascertain the cause of the localhost requests. We have listed the

characterization of these domains in Table 5.3 and Table 5.11.

Among the 9 LAN-requesting websites in our 2020 top 100K measurements, listed

in Table 5.4, we believe that 6 websites were doing so due to developer error. For the

remaining three (which all requested the HTTP root directory), we were unable to clearly

identify an underlying reason.

We observe a strict subset of these classes of local network behavior for our 2021 top

100K crawl and the crawl of malicious webpages. Thus in this section, as we discuss
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each behavior class, we first discuss results from our 2020 top 100K crawl and then draw

comparisons between the different datasets.

Fraud Detection

As shown in Table 5.3, for the first set of rows where the localhost network activity reason

is Fraud Detection, we encountered 36 websites in our 2020 top 100K crawl that make the

same set of WebSocket Secure (WSS) requests to 14 distinct localhost ports, all using the

same URL path and operating only on Windows 10.

We determine that these websites were deploying a fraud detection script from Lexis-

Nexis called ThreatMetrix [160], which claims to help the websites distinguish between

trusted transactions and fraudulent behavior. On each of these websites, we identified

that all of the localhost requests were made by a dynamically-generated JavaScript blob

object. We observe that these blobs are generated by an external JavaScript resource

loaded from either a subdomain (e.g., regstat.betfair.com for betfair.com)

or similar-appearing domain (e.g., ebay-us.com for ebay.com). The JavaScript blobs

collect telemetry from the localhost WSS requests, and upload the results back (in an en-

crypted format) to the external JavaScript-hosting site (e.g., ebay-us.com). Conducting

WHOIS lookups on these domains and their IP addresses, we find that these domains all

belong to the ThreatMetrix Inc. organization. As advertised on their website [160], Threat-

Metrix provides their customers with protection against fraud using network-based heuris-

tics. This purpose aligns with our observation that all but one (i.e., commoncause.org)

of the sites deploying ThreatMetrix are e-commerce websites.

We observe that the localhost ports scanned by ThreatMetrix are primarily the stan-

dard ports for various remote desktop software for Windows, as shown in Table 5.9. We

map ports to applications based on information from IANA’s Service Name and Transport

Protocol Port Number Registry [161] and SANS Internet Storm Center’s TCP/UDP Port

Activity Database [162]. We hypothesize that ThreatMetrix is attempting to determine if
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the website visitor’s host machine (focusing specifically on Windows hosts) may be un-

der remote control, potentially correlating with fraudulent activity. As the ThreatMetrix

script uses the WebSocket protocol for initiating requests, which is not bound by the Same-

Origin Policy and thus permits reading data from the request responses, the script may also

be gathering more extensive information about the network services active on each port

(e.g., server version and configuration).

Table 5.9: Services or malware operated over localhost ports found to be scanned.

IMC ’21, November 2–4, 2021, Virtual Event, USA Dhruv Kuchhal and Frank Li
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Figure 5: CDFs of the time delays between when a landing page is fetched and when we observed the first local network request,
across OSes, for our 2020 top 100K measurements.

Port (↓) Service/App Use Case

3389 Windows Remote Desktop Fraud Detection
4444 Malware: CrackDown, Prosiak,

Swift Remote Bot Detection4653 Malware: Cero
5555 Malware: ServeMe
5279 Unknown

Fraud
Detection

5900-03 Remote Framebuffer (e.g., VNC)
5931 AMMYY Remote Control
5939 TeamViewer
5944 Unknown (likely VNC)
5950 Cisco Remote Expert Manager
6039-40 X Window System
63333 Tripp Lite PowerAlert UPS
7054-55 QuickTime Streaming Server Bot Detection
7070 AnyDesk Remote Desktop Fraud Detection
9515 Malware: W32.Loxbot.A Bot Detection17556 Microsoft Edge WebDriver

Table 4: Common services or malware that operate on the
localhost ports scanned for fraud and bot detection purposes.

JavaScript blob object. We observe that these blobs are generated by
an external JavaScript resource loaded from either a subdomain (e.g.,
regstat.betfair.com for betfair.com) or similar-appearing do-
main (e.g., ebay-us.com for ebay.com). The JavaScript blobs collect
telemetry from the localhost WSS requests, and upload the results
back (in an encrypted format) to the external JavaScript-hosting
site (e.g., ebay-us.com). Conducting WHOIS lookups on these do-
mains and their IP addresses, we find that these domains all belong
to the ThreatMetrix Inc. organization. As advertised on their web-
site [40], ThreatMetrix provides their customers with protection
against fraud using network-based heuristics. This purpose aligns
with our observation that all but one (i.e., commoncause.org) of
the sites deploying ThreatMetrix are e-commerce websites.

We observe that the localhost ports scanned by ThreatMetrix are
primarily the standard ports for various remote desktop software
for Windows, as shown in Table 4. We map ports to applications
based on information from IANA’s Service Name and Transport
Protocol Port Number Registry [35] and SANS Internet Storm Cen-
ter’s TCP/UDP Port Activity Database [12]. We hypothesize that
ThreatMetrix is attempting to determine if the website visitor’s host
machine (focusing specifically on Windows hosts) may be under
remote control, potentially correlating with fraudulent activity. As
the ThreatMetrix script uses the WebSocket protocol for initiating
requests, which is not bound by the Same-Origin Policy and thus
permits reading data from the request responses, the script may
also be gathering more extensive information about the network
services active on each port (e.g., server version and configuration).

We briefly note that as our measurement method only exam-
ines website landing pages, ThreatMetrix may be more broadly
deployed on the internal pages of other websites. Indeed, a recent
blog post [5] identified several websites using ThreatMetrix specifi-
cally on login pages. We leave the exploration of internal website
pages to future work. In comparison to our study, which conducts a
large-scale comprehensive and systematic investigation of website
localhost and LAN activity, the blog post’s investigation was an
ad-hoc and manual one that considered a few websites suspected
to be using ThreatMetrix. The set of landing pages we identified as
using ThreatMetrix is a superset of those found in the blog post.

In our 2021 top 100K measurements, we continue to observe this
class of behavior for popular websites. We do note changes in the
websites deploying ThreatMetrix though (as indicated in Tables 5
and 7), as some websites stopped (e.g., citibank.com) while some
other previously crawled sites began exhibiting its fraud detection
localhost traffic (e.g., cibc.com). Interestingly, we also recorded
a set of phishing sites making localhost requests matching with
ThreatMetrix’s behavior (as seen in Table 8). While investigating
these phishing pages, we identify that they impersonate legitimate
websites using ThreatMetrix. We believe that the attackers have
cloned the web interface code of the legitimate impersonated web-
sites (e.g., customer-ebay.com cloning ebay.com), inadvertently
also copying over the ThreatMetrix JavaScript library (resulting in

We briefly note that as our measurement method only examines website landing pages,

ThreatMetrix may be more broadly deployed on the internal pages of other websites. In-

deed, a recent blog post [163] identified several websites using ThreatMetrix specifically

on login pages. In comparison to our study, which conducts a large-scale comprehensive

and systematic investigation of website localhost and LAN activity, the blog post’s investi-

gation was an ad-hoc and manual one that considered a few websites suspected to be using

ThreatMetrix. The set of landing pages we identified as using ThreatMetrix is a superset of

the ones found in the blog post.

In our 2021 top 100K measurements, we continue to observe this class of behavior for
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popular websites. We do note changes in the websites deploying ThreatMetrix though (as

indicated in Table 5.3 and Table 5.5), as some websites stopped (e.g., citibank.com)

while some other previously crawled sites began exhibiting its fraud detection localhost

traffic (e.g., cibc.com). Interestingly, we also recorded a set of phishing sites making

localhost requests matching with ThreatMetrix’s behavior (as seen in Table 5.10). While

investigating these phishing pages, we identify that they impersonate legitimate websites

using ThreatMetrix. We believe that the attackers have cloned the Web interface code of the

legitimate impersonated websites (e.g., customer-ebay.com cloning ebay.com), in-

advertently also copying over the ThreatMetrix JavaScript library (resulting in the phishing

page generating localhost requests). Prior work has documented similar cloning behavior

for phishing websites [58].

Bot Detection

From the Bot Detection section of Table 5.3, we see that 10 sites in our 2020 top 100K

measurements made HTTP requests to the same set of 7 ports on localhost, using the same

URL path and only on Windows 10.

We identify that this activity is initiated by BIG-IP ASM Bot Defense, a bot detection

service developed by F5 Inc. [164]. On each site, the localhost requests are initiated by a JS

script hosted at the relative path /TSPD, which is the standard path used by BIG-IP ASM

Bot Defense [165, 166]. Note here that this bot defense uses HTTP, as opposed to WSS

as done by ThreatMetrix (from section 5.2.3). Despite the application of the Same-Origin

Policy to these HTTP requests, this bot defense presumably is able to deduce whether or

not a localhost port is active. The JS script is heavily obfuscated, but we hypothesize that

this inference is based on a timing side-channel. A request to an active localhost port

returns quickly (even if the response cannot be read), while a request to an inactive port

will time-out.

Investigating further, we discover that 4 out of the 7 ports scanned are notably used
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Table 5.10: Summary of localhost requests found for malicious webpages.

(a) Type of Malicious webpage: Malware.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Malicious
Category Domains Protocol Ports Paths OS

W L M

Malware

(79 domains, omitted for brevity) http(s) 80/443 /*/wp-content/* ✓ ✓ ✓
acffiorentina.ru http 8080 /socket.io/socket.io.js ✓ ✓ ✓

elilaifs.cn 28317, 36759 /get_thunder_version ✓ ✓ ✓
boatattorney.com https 35729 /livereload.js ✓ ✓

jdih.purworejokab.go.id

http 80

/website-bphn-bk/* ✓ ✓ ✓
metolegal.com /metolegal/wp-includes/js/* ✓ ✓ ✓

ppdb.smp1sbw.sch.id /ppdbv3/ro-error/* ✓
scopesports.net /scope/xpertspanel/* ✓
tonyhealy.co.za / ✓ ✓ ✓
oceanos.com.co /wp-oceanos/* ✓ ✓ ✓

Abuse autorizador5.com.br, classyfashionbd.com,
coralive.org, saudiwallcovering.com http(s) 80/443 /*/wp-content/* ✓ ✓ ✓

Phishing

ebaybuy.com.buying-item-guest.com,
100-25-26-254.cprapid.com,

advancedlearningdynamics.com,
smarturl.it, customer-ebay.com,

{www.}citibank.gulajawajahe.my.id,
o2-billing.org, samarasecrets.com,
sic-week.000webhostapp.com,

signin01.kauf-eday.de, hotelmontiazzurri.com,
mahdistock.com, adesignsovast.com

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/ ✓

ag4.gartenbau-olching.de,
grp02.id.rakutan-co-jpr.buzz

http 80

/
✓ ✓

ag4.gartenbau-olching.de ✓
rakuten.* (8 domains),

www.ip.rakuten.1ex.info,
rakuteni.co.jp.ai12.info,

www.ip.rakuten.rbimomro.icu

✓

elmagra.net /dashboard-v1/* ✓ ✓
etoro-invest.org /StudentForum//* ✓ ✓ ✓

amazon.co.jp.* (12 domains) /robots.txt ✓
survivalhabits.com 44056 /NonExistentImage33090.gif ✓ ✓

evolution-postepay.com https 5140 /NonExistentImage19258.gif ✓ ✓
postepaynuovo.com 62389 /NonExistentImage55353.gif ✓ ✓ ✓
sbloccareposte.com http 44938 /NonExistentImage37362.gif ✓
verificapostepay.com https 49622 /NonExistentImage20705.gif ✓ ✓

aladdinstar.com 8443 /images/*.png ✓ ✓ ✓
Table 8: Summary of localhost requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Malicious
Category Domains Protocol Ports Paths OS

W L M

Malware

(79 domains, omitted for brevity) http(s) 80/443 /*/wp-content/* ✓ ✓ ✓
acffiorentina.ru http 8080 /socket.io/socket.io.js ✓ ✓ ✓

elilaifs.cn 28317, 36759 /get_thunder_version ✓ ✓ ✓
boatattorney.com https 35729 /livereload.js ✓ ✓

jdih.purworejokab.go.id

http 80

/website-bphn-bk/* ✓ ✓ ✓
metolegal.com /metolegal/wp-includes/js/* ✓ ✓ ✓

ppdb.smp1sbw.sch.id /ppdbv3/ro-error/* ✓
scopesports.net /scope/xpertspanel/* ✓
tonyhealy.co.za / ✓ ✓ ✓
oceanos.com.co /wp-oceanos/* ✓ ✓ ✓

Abuse autorizador5.com.br, classyfashionbd.com,
coralive.org, saudiwallcovering.com http(s) 80/443 /*/wp-content/* ✓ ✓ ✓

Phishing

ebaybuy.com.buying-item-guest.com,
100-25-26-254.cprapid.com,

advancedlearningdynamics.com,
smarturl.it, customer-ebay.com,

{www.}citibank.gulajawajahe.my.id,
o2-billing.org, samarasecrets.com,
sic-week.000webhostapp.com,

signin01.kauf-eday.de, hotelmontiazzurri.com,
mahdistock.com, adesignsovast.com

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/ ✓

ag4.gartenbau-olching.de,
grp02.id.rakutan-co-jpr.buzz

http 80

/
✓ ✓

ag4.gartenbau-olching.de ✓
rakuten.* (8 domains),

www.ip.rakuten.1ex.info,
rakuteni.co.jp.ai12.info,

www.ip.rakuten.rbimomro.icu

✓

elmagra.net /dashboard-v1/* ✓ ✓
etoro-invest.org /StudentForum//* ✓ ✓ ✓

amazon.co.jp.* (12 domains) /robots.txt ✓
survivalhabits.com 44056 /NonExistentImage33090.gif ✓ ✓

evolution-postepay.com https 5140 /NonExistentImage19258.gif ✓ ✓
postepaynuovo.com 62389 /NonExistentImage55353.gif ✓ ✓ ✓
sbloccareposte.com http 44938 /NonExistentImage37362.gif ✓
verificapostepay.com https 49622 /NonExistentImage20705.gif ✓ ✓

aladdinstar.com 8443 /images/*.png ✓ ✓ ✓
Table 8: Summary of localhost requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).

(b) Type of Malicious webpage: Abuse.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Malicious
Category Domains Protocol Ports Paths OS

W L M

Malware

(79 domains, omitted for brevity) http(s) 80/443 /*/wp-content/* ✓ ✓ ✓
acffiorentina.ru http 8080 /socket.io/socket.io.js ✓ ✓ ✓

elilaifs.cn 28317, 36759 /get_thunder_version ✓ ✓ ✓
boatattorney.com https 35729 /livereload.js ✓ ✓

jdih.purworejokab.go.id

http 80

/website-bphn-bk/* ✓ ✓ ✓
metolegal.com /metolegal/wp-includes/js/* ✓ ✓ ✓

ppdb.smp1sbw.sch.id /ppdbv3/ro-error/* ✓
scopesports.net /scope/xpertspanel/* ✓
tonyhealy.co.za / ✓ ✓ ✓
oceanos.com.co /wp-oceanos/* ✓ ✓ ✓

Abuse autorizador5.com.br, classyfashionbd.com,
coralive.org, saudiwallcovering.com http(s) 80/443 /*/wp-content/* ✓ ✓ ✓

Phishing

ebaybuy.com.buying-item-guest.com,
100-25-26-254.cprapid.com,

advancedlearningdynamics.com,
smarturl.it, customer-ebay.com,

{www.}citibank.gulajawajahe.my.id,
o2-billing.org, samarasecrets.com,
sic-week.000webhostapp.com,

signin01.kauf-eday.de, hotelmontiazzurri.com,
mahdistock.com, adesignsovast.com

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/ ✓

ag4.gartenbau-olching.de,
grp02.id.rakutan-co-jpr.buzz

http 80

/
✓ ✓

ag4.gartenbau-olching.de ✓
rakuten.* (8 domains),

www.ip.rakuten.1ex.info,
rakuteni.co.jp.ai12.info,

www.ip.rakuten.rbimomro.icu

✓

elmagra.net /dashboard-v1/* ✓ ✓
etoro-invest.org /StudentForum//* ✓ ✓ ✓

amazon.co.jp.* (12 domains) /robots.txt ✓
survivalhabits.com 44056 /NonExistentImage33090.gif ✓ ✓

evolution-postepay.com https 5140 /NonExistentImage19258.gif ✓ ✓
postepaynuovo.com 62389 /NonExistentImage55353.gif ✓ ✓ ✓
sbloccareposte.com http 44938 /NonExistentImage37362.gif ✓
verificapostepay.com https 49622 /NonExistentImage20705.gif ✓ ✓

aladdinstar.com 8443 /images/*.png ✓ ✓ ✓
Table 8: Summary of localhost requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Malicious
Category Domains Protocol Ports Paths OS

W L M

Malware

(79 domains, omitted for brevity) http(s) 80/443 /*/wp-content/* ✓ ✓ ✓
acffiorentina.ru http 8080 /socket.io/socket.io.js ✓ ✓ ✓

elilaifs.cn 28317, 36759 /get_thunder_version ✓ ✓ ✓
boatattorney.com https 35729 /livereload.js ✓ ✓

jdih.purworejokab.go.id

http 80

/website-bphn-bk/* ✓ ✓ ✓
metolegal.com /metolegal/wp-includes/js/* ✓ ✓ ✓

ppdb.smp1sbw.sch.id /ppdbv3/ro-error/* ✓
scopesports.net /scope/xpertspanel/* ✓
tonyhealy.co.za / ✓ ✓ ✓
oceanos.com.co /wp-oceanos/* ✓ ✓ ✓

Abuse autorizador5.com.br, classyfashionbd.com,
coralive.org, saudiwallcovering.com http(s) 80/443 /*/wp-content/* ✓ ✓ ✓

Phishing

ebaybuy.com.buying-item-guest.com,
100-25-26-254.cprapid.com,

advancedlearningdynamics.com,
smarturl.it, customer-ebay.com,

{www.}citibank.gulajawajahe.my.id,
o2-billing.org, samarasecrets.com,
sic-week.000webhostapp.com,

signin01.kauf-eday.de, hotelmontiazzurri.com,
mahdistock.com, adesignsovast.com

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/ ✓

ag4.gartenbau-olching.de,
grp02.id.rakutan-co-jpr.buzz

http 80

/
✓ ✓

ag4.gartenbau-olching.de ✓
rakuten.* (8 domains),

www.ip.rakuten.1ex.info,
rakuteni.co.jp.ai12.info,

www.ip.rakuten.rbimomro.icu

✓

elmagra.net /dashboard-v1/* ✓ ✓
etoro-invest.org /StudentForum//* ✓ ✓ ✓

amazon.co.jp.* (12 domains) /robots.txt ✓
survivalhabits.com 44056 /NonExistentImage33090.gif ✓ ✓

evolution-postepay.com https 5140 /NonExistentImage19258.gif ✓ ✓
postepaynuovo.com 62389 /NonExistentImage55353.gif ✓ ✓ ✓
sbloccareposte.com http 44938 /NonExistentImage37362.gif ✓
verificapostepay.com https 49622 /NonExistentImage20705.gif ✓ ✓

aladdinstar.com 8443 /images/*.png ✓ ✓ ✓
Table 8: Summary of localhost requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).

(c) Type of Malicious webpage: Phishing.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Malicious
Category Domains Protocol Ports Paths OS

W L M

Malware

(79 domains, omitted for brevity) http(s) 80/443 /*/wp-content/* ✓ ✓ ✓
acffiorentina.ru http 8080 /socket.io/socket.io.js ✓ ✓ ✓

elilaifs.cn 28317, 36759 /get_thunder_version ✓ ✓ ✓
boatattorney.com https 35729 /livereload.js ✓ ✓

jdih.purworejokab.go.id

http 80

/website-bphn-bk/* ✓ ✓ ✓
metolegal.com /metolegal/wp-includes/js/* ✓ ✓ ✓

ppdb.smp1sbw.sch.id /ppdbv3/ro-error/* ✓
scopesports.net /scope/xpertspanel/* ✓
tonyhealy.co.za / ✓ ✓ ✓
oceanos.com.co /wp-oceanos/* ✓ ✓ ✓

Abuse autorizador5.com.br, classyfashionbd.com,
coralive.org, saudiwallcovering.com http(s) 80/443 /*/wp-content/* ✓ ✓ ✓

Phishing

ebaybuy.com.buying-item-guest.com,
100-25-26-254.cprapid.com,

advancedlearningdynamics.com,
smarturl.it, customer-ebay.com,

{www.}citibank.gulajawajahe.my.id,
o2-billing.org, samarasecrets.com,
sic-week.000webhostapp.com,

signin01.kauf-eday.de, hotelmontiazzurri.com,
mahdistock.com, adesignsovast.com

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/ ✓

ag4.gartenbau-olching.de,
grp02.id.rakutan-co-jpr.buzz

http 80

/
✓ ✓

ag4.gartenbau-olching.de ✓
rakuten.* (8 domains),

www.ip.rakuten.1ex.info,
rakuteni.co.jp.ai12.info,

www.ip.rakuten.rbimomro.icu

✓

elmagra.net /dashboard-v1/* ✓ ✓
etoro-invest.org /StudentForum//* ✓ ✓ ✓

amazon.co.jp.* (12 domains) /robots.txt ✓
survivalhabits.com 44056 /NonExistentImage33090.gif ✓ ✓

evolution-postepay.com https 5140 /NonExistentImage19258.gif ✓ ✓
postepaynuovo.com 62389 /NonExistentImage55353.gif ✓ ✓ ✓
sbloccareposte.com http 44938 /NonExistentImage37362.gif ✓
verificapostepay.com https 49622 /NonExistentImage20705.gif ✓ ✓

aladdinstar.com 8443 /images/*.png ✓ ✓ ✓
Table 8: Summary of localhost requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Malicious
Category Domains Protocol Ports Paths OS

W L M

Malware

(79 domains, omitted for brevity) http(s) 80/443 /*/wp-content/* ✓ ✓ ✓
acffiorentina.ru http 8080 /socket.io/socket.io.js ✓ ✓ ✓

elilaifs.cn 28317, 36759 /get_thunder_version ✓ ✓ ✓
boatattorney.com https 35729 /livereload.js ✓ ✓

jdih.purworejokab.go.id

http 80

/website-bphn-bk/* ✓ ✓ ✓
metolegal.com /metolegal/wp-includes/js/* ✓ ✓ ✓

ppdb.smp1sbw.sch.id /ppdbv3/ro-error/* ✓
scopesports.net /scope/xpertspanel/* ✓
tonyhealy.co.za / ✓ ✓ ✓
oceanos.com.co /wp-oceanos/* ✓ ✓ ✓

Abuse autorizador5.com.br, classyfashionbd.com,
coralive.org, saudiwallcovering.com http(s) 80/443 /*/wp-content/* ✓ ✓ ✓

Phishing

ebaybuy.com.buying-item-guest.com,
100-25-26-254.cprapid.com,

advancedlearningdynamics.com,
smarturl.it, customer-ebay.com,

{www.}citibank.gulajawajahe.my.id,
o2-billing.org, samarasecrets.com,
sic-week.000webhostapp.com,

signin01.kauf-eday.de, hotelmontiazzurri.com,
mahdistock.com, adesignsovast.com

wss

3389,
5279,

5900-03,
5931,
5939,
5944,
5950,

6039-40,
63333,
7070

/ ✓

ag4.gartenbau-olching.de,
grp02.id.rakutan-co-jpr.buzz

http 80

/
✓ ✓

ag4.gartenbau-olching.de ✓
rakuten.* (8 domains),

www.ip.rakuten.1ex.info,
rakuteni.co.jp.ai12.info,

www.ip.rakuten.rbimomro.icu

✓

elmagra.net /dashboard-v1/* ✓ ✓
etoro-invest.org /StudentForum//* ✓ ✓ ✓

amazon.co.jp.* (12 domains) /robots.txt ✓
survivalhabits.com 44056 /NonExistentImage33090.gif ✓ ✓

evolution-postepay.com https 5140 /NonExistentImage19258.gif ✓ ✓
postepaynuovo.com 62389 /NonExistentImage55353.gif ✓ ✓ ✓
sbloccareposte.com http 44938 /NonExistentImage37362.gif ✓
verificapostepay.com https 49622 /NonExistentImage20705.gif ✓ ✓

aladdinstar.com 8443 /images/*.png ✓ ✓ ✓
Table 8: Summary of localhost requests found for malicious webpages. OSes are Windows (W), Linux (L) and Mac (M).
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by well-known malware (as shown in Table 5.9). The other ports are for Microsoft Edge

WebDriver, used for browser automation, and the QuickTime Streaming Server, which

historically has been heavily exploited [167]. This set of ports suggests that BIG-IP ASM

Bot Defense potentially searches for (i) indicators of host compromise, and (ii) the presence

of browser automation.

We find that BIG-IP ASM documentation indicates that this product enables user finger-

printing [168]. The F5 Inc. website also claims that they provide their customers, including

government agencies, with protection against botnets using network-based heuristics [169].

Aligned with this description, the sites that we observed deploying this bot detection script

belonged to government-related entities (e.g., central banks and websites hosting govern-

ment data).

Interestingly, we do not observe sites making bot detection requests during our 2021 top

100K crawl as well as the crawl of malicious webpages. Upon inspecting the websites that

originally generated such requests in the 2020 top 100K crawl, we do confirm that these

websites no longer host the BIG-IP ASM Bot Defense JS script (although we are uncertain

of the impetus for this change).

Native Applications

In our 2020 top 100K crawl, we identified 12 websites that were communicating with

native applications associated with the website itself, as listed under Native Applications

in Table 5.3. Except for one site, all of these sites behaved uniformly across OSes. Below

we detail the localhost communications that websites initiate with native applications.

• E-commerce: samsungcard.co.kr redirects to samsungcard.com, an e-commerce

website. We found that samsungcard.com looks for the presence of INCA Internet’s

nProtect Online Security [170], an endpoint security solution which claims to protect

user transactions with financial services against fraud, and communicates with a digital

signature software called AnySign [171]. Our telemetry observed samsungcard.com
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requesting localhost ports 14440-9 over HTTP via a JS file that specified “nProtect On-

line Security” in its header, and requests to other ports over WebSockets, via a different

JS file with “AnySign for PC” in its header.

We note that while the end goal of this localhost communication is presumably similar

to the fraud detection goals of ThreatMetrix (in section 5.2.3), the localhost communi-

cation is used to interact with a native application which performs the fraud detection,

rather than the communication being done as part of the fraud detection method (as with

ThreatMetrix).

• Gaming: faceit.com, gamehouse.com, games.lol, zylom.com, and trustd

ice.win are gaming websites that conduct localhost communication to detect their

native gaming clients. faceit.com and games.lol use the WebSockets protocol,

whereas the others communicate using HTTP.

• Communication: cponline.pw and runeline.com redirect to channel invitation

pages for Discord, an IM/VoIP application [172]. These webpages initiate localhost com-

munication with Discord’s native client. Similarly, screenleap.com makes localhost

requests to its own screen sharing product. Given the recent extensive use of video con-

ferencing software clients such as Zoom [173] and BlueJeans [174], we expect that we

are missing other communication websites performing localhost requests, as their activi-

ties are not exhibited on landing pages.

• Media: acestream.me initiates localhost communication with the Ace Stream client,

a live-streaming media platform.

Given the close relationship between the website and the native app (e.g., a gaming

website contacting its associated gaming client), we assume benign intent here, although

we note that the website may be detecting if a visitor has already installed the associated

application, and adjusting its behavior (e.g., advertising) accordingly. Additionally, this

class of localhost communication highlights a legitimate use case that should be preserved

if attempting to defend against malicious forms of Web-based localhost traffic.
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In addition to these 12 websites, we found another 14 websites in our 2021 top 100K

measurements similarly attempting to communicate with their native apps (as listed in Ta-

ble 5.5). Only one website was found no longer making these localhost requests in our sec-

ond crawl. For malicious webpages, we identified one similar case with elilaifs.cn.

Inspecting the webpage indicates that it imports the JS library of Thunder [175], a down-

load manager, which attempts to communicate with its native application.

Developer Errors

Beyond the intentional locally-bound traffic that websites make, we find that a large class of

local resource requests likely arise due to developer error. For our 2020 top 100K measure-

ments, we believe this situation occurred on 44 (out of 107) websites requesting localhost

resources and 6 (out of 9) sites requesting LAN resources, indicating that it is relatively

widespread among our observed sites. Table 5.11 and Table 5.4 characterize these websites

in detail.

In these cases, we observe localhost and LAN requests for various files (e.g., images,

videos, JavaScript libraries) that were likely hosted at a local server during Web develop-

ment. For example, a number of websites request a URL path that contains /wp-content

/uploads/, suggesting that the requested resource is a file uploaded to the local Word-

Press installation. Upon manual investigation, we do not find any evidence suggesting

intentional localhost or LAN communication across these websites, and we believe that

these resource requests are unintentional and remnants of when the websites were being

developed and tested. Here, we also discuss these cases in more detail.

• Accessing files hosted on a local file server: As seen in the first set of rows in Ta-

ble 5.11 for localhost requests and Table 5.4 for LAN requests, we find that 57%

(25/44) and 67% (6/9) of websites exhibiting developer errors request files (e.g., im-

ages) from a server on localhost or LAN, respectively, all using HTTP(S).

Interestingly, there are cases where this behavior differs across OSes.
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We hypothesize that these discrepancies arise in part because websites may present

themselves differently for different OSes (for example, based on the user-agent string),

and certain website elements that generate the unintentional resource fetch are not in-

cluded when on certain OSes.

• Penetration testing: rkn.gov.ru fetches the JavaScript file xook.js, a file used

as part of OWASP’s Xenotix Exploit Framework, which Web developers use for

vulnerability detection and penetration testing [176].

• LiveReload.js: Several websites fetch the file livereload.js, which is for the

LiveReload.js tool that helps Web developers dynamically monitor changes during

Web development [177].

• Redirect: romadecade.org and fincaraiz.com.co redirect to http://127

.0.0.1/. We are uncertain of the reason.

• SocksJS-Node: We observe five websites initiating localhost HTTP(S) requests where

the URL path is /sockjs-node/info. This path is associated with SockJS-node,

which is the Node.js server-side component of the SockJS JavaScript library [178].

This library provides a WebSocket-like communication interface between a server

and a browser even for legacy browsers without WebSocket support. Thus, we be-

lieve that the website developers were using SockJS during development and testing,

which involved deploying a localhost SockJS-node server, and this artifact remained

in the published website. Interestingly, this activity was observed only when on a

Mac.

• Other local services: We observe 7 websites initiating localhost HTTP(S) requests

likely for interacting with local network services during website development and

testing. For example, zakupki.gov.ru updates user activity state at a localhost

service.

Similar cases were found in both the 2021 top 100K crawl (as shown in Table 5.5

and Table 5.6) and our crawl of malicious webpages (Table 5.10 and Table 5.8). For mali-
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Table 5.11: Websites with developer errors that resulted in localhost requests (2020 crawl).

(a) To access a local file server.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

(b) Due to a pen testing tool.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

(c) Because of LiveReload.js.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

cious pages, we believe that either attackers made such developer errors on their own attack

sites, or more likely, the attackers compromised benign websites exhibiting these errors. In
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Table 5.11: Websites with developer errors that resulted in localhost requests (2020 crawl)
contd.

(d) Because of a redirect.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).
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Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

(e) Because of SocksJS-Node.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).
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Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).

(f) Other local services.Knock and Talk: Investigating Local Network Communications on Websites IMC ’21, November 2–4, 2021, Virtual Event, USA

Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).
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Reason Rank
(↓) Domain Protocol Port Paths OS

W L M

Local file
server

22730 smartcatdesign.net
http

8888 /wp-content/uploads/2018/06/*.jpg ✓ ✓ ✓
36786 uinsby.ac.id 80 /eduma/demo-1/wp-

content/uploads/sites/2/2017/11/*.jpg
✓ ✓ ✓

38865 upbasiceduboard.gov.in (-) 1987 /TeacherRecruitment2018/images/*.jpg ✓ ✓
41468 walisongo.ac.id https 80 /wordpress/wp-content/uploads/2015/07/*.jpg ✓ ✓
41596 classera.com http 8080 /wp-content/uploads/2020/04/*.png ✓ ✓
45177 weavesilk.com* 80 /Silk%20Static/*{.mp4, .ogg} ✓ ✓ ✓
50390 upsen.net (-)

http 80 /6/10/*.js ✓ ✓ ✓
51910 dsb.cn* .*jpg ✓
56450 sin-tech.cn (-) 9999 /admin/kindeditor/attached/image/20191017/*.jpg ✓ ✓ ✓
56730 nwolb.com* https 36762 /*.gif ✓ ✓ ✓
57467 cryptopia.co.nz*

http

49972 /*.ico ✓ ✓ ✓
63636 weijuju.com* (-) 9092 /image/page/index/*.png ✓ ✓ ✓
63770 tdk.gov.tr*

80

/magazon/magazon-wp/wp-
content/uploads/2013/02/*.ico

✓ ✓ ✓

65915 shqilon.com (-) /stop/*.html ✓ ✓ ✓
66891 aau.edu.et* /graduation/wp-content/uploads/2020/06/*.png ✓
67851 sirrus.com.br /sitesirrus/wp-content/uploads/2017/07/*.png ✓ ✓ ✓
69708 unionbankph.com* 8888 /socket.io/*.js ✓ ✓ ✓
77636 qubscribe.com (-) https 443 /wp-content/uploads/2019/03/*.png ✓ ✓
77761 persian-magento.ir (-) http 80

/graffito/images/sampledata/*.png ✓ ✓ ✓
86045 serymark.com (-) /sm/wp-content/uploads/2017/06/*.png ✓ ✓ ✓
88997 ghana.com (-) https 8080 /gdc/wp-

content/themes/consultix/images/*.png
✓ ✓ ✓

92768 gomedici.com

http

3000 /assets/*.png ✓ ✓
93798 xaipe.edu.cn (-) 80 /*.html ✓ ✓
94771 health.com.kh (-) 8899 /newhealth/wp-content/uploads/2018/01/*.png ✓ ✓ ✓
96981 urkund.com (-) 4337 /wp-content/uploads/2019/07/*.png ✓ ✓

Pen test 17827 rkn.gov.ru (-) http 5005 /xook.js ✓ ✓ ✓

LiveReload.js

19244 cruzeirodosulvirtual.com.br* http 460

/livereload.js

✓ ✓ ✓
53124 melissaanddoug.com*

https 35729

✓ ✓ ✓
53216 airfind.com* ✓ ✓ ✓
58629 hollins.edu ✓ ✓ ✓
59978 amitriptylineelavilgha.com (-) http ✓ ✓ ✓

Redirect 51142 romadecade.org (-) http 80 / ✓ ✓ ✓
63644 fincaraiz.com.co* ✓

SocksJS-Node

49144 lyfdose.com http

9000 /sockjs-node/info?t=*

✓
49990 klik-mag.com

https

✓
51101 acedirectory.org ✓
57249 veteranstodayarchives.com ✓
66971 smartsearch.me ✓

Other local
services

7700 zakupki.gov.ru (-) https 1931 /record/state ✓ ✓ ✓
24740 gamezone.com

http

8000 /setuid ✓ ✓ ✓
26400 filemail.com 56666 / ✓ ✓ ✓
31518 interbank.pe 9080 /avisos-portal ✓ ✓ ✓
58708 fsist.com.br (-) 28337 /getCertificados ✓ ✓ ✓
62852 spaceappschallenge.org

8000
/graphql ✓ ✓

90791 fromhomefitness.com (-) https /app/getLicenseKey ✓

Table 11: Summary of websites exhibiting developer errors that resulted in localhost requests, as observed in our 2020 top 100K
crawl. OSes are Windows (W), Linux (L) and Mac (M). Domains marked with an asterisk (*) were in our 2021 top 100K crawl but
did not make localhost requests, and domains marked with a minus sign (-) were not present in the 2021 top list snapshot (and
thus were not crawled).total, we attribute more than 90% of the localhost activity on malicious webpages to this

behavior class.

While presumably benign, these local network requests indicate that some functionality

on the site is incorrect, as the webpage attempts to load a resource that does not actually

exist. We also note that the requests can reveal aspects of the site development process,

such as a particular vulnerability testing JavaScript framework used by rkn.gov.ru. Ul-

timately, these requests reflect a class of Web developer errors that can impact the function-

ality of websites but should be easy to identify and remedy, such as through searching for

localhost or private IP address requests in the website code base or examining the requests

made when loading the website.
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Unknown Cases

We did not identify plausible explanations for the 5 websites listed under Unknown in Ta-

ble 5.3. There were 3 websites (farsroid.com, tra...fgt.xyz and 1-movies.ir)

generating LAN traffic that we could not confidently classify. These sites return a 403

Forbidden page with an iframe element sourced at http://10.10.34.35:80. Re-

cently, Raman et al. [179] observed such iframe sources occurring during website censor-

ship in Iran. We note that farsroid.com and 1-movies.ir resolve to Iranian IP

addresses, but tra...fgt.xyz did not. We suspect that the observe behavior is related

to censorship, although we remain uncertain of the exact situation, and are unclear why this

particular LAN address is used.

5.3 Discussion

Here, we synthesize our results and their implications on Web security and privacy.

5.3.1 Website Anti-Abuse

From our measurements, we discovered that a number of sites leverage Web-based local-

host scanning to defend themselves against abuse. These sites are primarily e-commerce

and government-related ones and include highly-ranked sites for organizations such as

eBay and Fidelity Investments. However, the websites do not conduct local network scan-

ning themselves, but rather (as uncovered in section 5.2.3 and section 5.2.3) they rely on

third-party services (i.e., ThreatMetrix and BIG-IP ASM). A 2018 ThreatMetrix brochure [180]

claimed to protect $170 billion worth of e-commerce transactions in a year, preventing

$19.5 billion in fraud. They advertised an extensive database of 1.4 billion unique online

identities collected from their clients operating in the e-commerce space. Given the preva-

lence of online abuse across various platforms beyond just e-commerce, such as on social

media and communication sites, we may observe an expansion of Web-based localhost
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scanning for anti-abuse on other sites.

Our analysis in section 5.2.3 and section 5.2.3 identified that these anti-abuse measures

focus on detecting indicators of host compromise or remote control. We are unable to as-

sess the reliability of these signals for anti-abuse. However, we hypothesize that attackers

could evade this detection with relative ease by modifying the ports they operate on. For

example, attackers could configure a remote control server on a bot to run on a non-standard

port, and malware could dynamically adjust the ports it listens on. This evolution would

likely result in an arms race that seems tilted in the attacker’s favor due to information im-

balance. As any Web-based localhost scanning activity would be visible to website visitors

as well as attackers, attackers can directly observe and counter the anti-abuse strategies

deployed. In contrast, attackers lack direct visibility into the operations of server-side anti-

abuse mechanisms. Thus, we question whether Web-based localhost scanning for fraud

and bot detection will remain viable in the long term.

5.3.2 Web Tracking

We did not uncover explicit evidence of user tracking through Web-based localhost or LAN

scanning, a positive finding regarding Web privacy. However, we did observe clear host

profiling as part of fraud and bot detection, which can naturally be extended for user finger-

printing and tracking (as demonstrated by existing proof-of-concept techniques [20, 26]).

Similar to other Web fingerprinting methods that have been used in practice, such as de-

tecting the browser extensions installed [181], Web trackers could distinguish users based

on their localhost network services and LAN devices. Prior work [39] revealed how web-

sites often deploy surreptitious methods for Web tracking. With ongoing efforts to curtail

the amount of data that websites can obtain on users, including Google’s Privacy Sandbox

project [182], Web trackers may be forced to resort to novel tracking mechanisms such as

those based on local network scanning.

Further incentivizing this new tracking strategy is the increasing amount of information
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that can be derived from Web-based localhost and LAN scanning. On user machines, nu-

merous modern native applications (such as those discussed in section 5.2.3) host localhost

network services, and their diversity and popularity have grown (particularly gaming and

video conferencing clients during the COVID-19 pandemic [183, 184]). Similarly, user

home networks contain growing numbers of devices [149], particularly IoT devices with

exposed network interfaces that can be readily detected [26]. Thus, Web-based local scan-

ning should provide significant amounts of information about users, which also serve as

high entropy features for fingerprinting and tracking them. We discuss defending against

such website behavior next.

5.3.3 Defending Against Malicious Web-Based Local Traffic

We did not discover any websites generating malicious attack traffic to localhost or LAN

network services, as hypothesized by prior work [20, 26, 22]. Nonetheless, browsers should

ideally protect users from both malicious attacks and Web tracking based on locally-bound

network traffic.

The browser security community has already begun working on mitigating the un-

intentional exposure of local network resources to browsers. In March 2021, the Web

Platform Incubator Community Group (WICG) [185] proposed modifications to the Fetch

API [186], where resources loaded from a public IP space are allowed to fetch resources

from private/local IP spaces only if: 1) the public resource was loaded over a secure chan-

nel (i.e., https or wss), and 2) a CORS preflight request to the local network origin

is successful [187]. These CORS preflight requests should include the Access-Control-

Request-Private-Network=true header, and browsers should only permit access to the local

network resource if the same header is in the responses.

We believe this proposal is a promising step in the right direction, as such an opt-

in model for access to a user’s local network resources would support legitimate use cases

(e.g., native application communication), while barring other unintentional exposure. How-
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ever, the real-world security and privacy impact of such a proposal depends on its imple-

mentation and adoption, by both browser vendors and local network services (e.g., native

applications). As of this writing, Google Chrome has initiated a deprecation trial to adopt

the proposal [188]. In the interim, before broad adoption by local network services and

native applications, browsers could alert the user before initiating locally-bound requests,

similar to existing browser permission prompts for other access requests. This human-in-

the-loop approach could help prevent unauthorized local communication and so far, has

already been adopted by the Brave browser [189].

We hope that our findings from this study help inform and drive the further development

of potential defenses against malicious Web-based local traffic.

5.3.4 Developer Errors

A large number of websites were found making local network requests likely due to de-

veloper errors. As discussed in section 5.2.3, these requests reflect broken functionality on

the sites as well as potential information leakage on the Web development and testing pro-

cess. Therefore, we recommend that Web developers check for such local network behavior

through either analyzing the website code base or examining network traffic generated by

the website during testing. We note that while assessing a website during testing, different

user-agents should be evaluated, as we observed different behavior across OSes even for

developer errors (likely due to the error occurring in OS-specific portions of the website

code). We expect that these errors should be easy to remedy, as the request destinations

can be updated to the correct public servers, or the traffic-generating code can be removed

altogether.

5.4 Conclusion

In this study, we conducted a large-scale empirical investigation of if, how, and why modern

websites interact with network services on a browser’s localhost and LAN. Crawling both
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the landing pages of the Tranco top 100K domains [150] as well as 145K malware, phish-

ing, and abuse websites, using Google Chrome on three popular desktop OSes (Windows,

Linux, and Mac), we uncovered hundreds of websites generating requests to internal net-

work destinations, including highly-ranked sites within the top 10K. We found that local

network activity was not uniform across OSes, with the most activity exhibited on Win-

dows. We also observed extensive use of WebSockets for locally-destined connections,

which notably is not bound by the Same-Origin Policy.

By investigating the detected top websites in detail, we identified four common causes

for the local traffic: fraud detection, bot detection, native application communication, and

developer errors. Notably, the fraud and bot detection techniques conducted host profiling.

While we did not uncover explicit user tracking, the adaptation of these host profiling

techniques for such purposes may be on the horizon. Defending against such malicious

Web-based local traffic will require preserving the legitimate use case of native application

communication. Meanwhile, the class of developer errors that we exposed affects website

functionality but should be easy for Web developers to discover and remedy.

For malicious websites, we did not detect internal network attacks. Rather, 90% of

malicious webpages with local network activity exhibited local traffic matching the de-

veloper errors observed on top websites, suggesting that either attackers make the same

mistakes when implementing their attack websites, or perhaps more likely, the attackers

compromised benign websites exhibiting these errors. We also found an interesting case

of phishing webpages cloning the Web interfaces of legitimate websites that generate local

traffic for fraud detection, thus inadvertently inheriting the same local network behavior.

Ultimately, our work establishes empirical grounding on the intentional and uninten-

tional localhost and LAN network activities of real-world websites. Future work can ex-

pand upon our initial investigation. As discussed in section 5.1.3, our examination of web-

sites only considered the landing page, but we expect that internal pages, such as those

for account creation or login, may also generate localhost and LAN network traffic. Ad-

107



ditionally, our measurement method (as detailed in section 5.1) focused on a desktop en-

vironment. Subsequent studies can build upon our work by evaluating websites on mobile

platforms and inspecting website internal pages. Our study also uncovered host profiling

purportedly for fraud and bot detection. These techniques can be studied in more depth to

characterize their effectiveness in practice and assess the potential risk that they are adapted

for user tracking purposes. Finally, browser mechanisms can be developed to detect and

prohibit malicious local network requests from websites while preserving legitimate use

cases, thus better protecting user security and privacy on the Web.
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CHAPTER 6

INVESTIGATING THIRD-PARTY WEB CONTENT IN ANDROID APPS

Mobile devices are ubiquitous in today’s digital world. According to a June 2023 estimate,

more than 65% of Web traffic originates from these devices [1]. This includes not only

users browsing the Web via mobile browsers, but also various mobile apps that display

Web content. For example, hybrid mobile apps that render a Web page in full-screen mode

within an app, in-app advertisements that show free content alongside ads, and Web links

that users follow from within an app. Traditionally, such functionality has been achieved

using the android.webkit.WebView class, or simply ‘WebView’. WebView is a

component of Android’s View class that allows developers to embed Web pages into their

app’s interface [55]. Android suggests using it for trusted first-party content, as it gives the

app more control over the webpage, such as executing Javascript (JS) code, intercepting

requests, and enabling interaction between the webpage and the app’s native code [190].

This enables hybrid app experiences that can be useful in many contexts [191, 192]. How-

ever, nothing prevents it from loading untrusted third-party content, which exposes a large

attack surface that has been extensively studied. Custom Tabs (CT), on the other hand, is

a feature designed for displaying third-party Web content securely and efficiently. It has

been available in Android devices since 2015 [193]. With CTs, developers can provide a

customized browser experience within their app using Android browsers such as Chrome.

It loads the webpage with access to the user’s default browser cookies but does not inter-

fere with the page itself [190, 194]. CT offers the latest browser experience, with a secure

User Interface (e.g., SSL lock icon), without requiring extra development effort. As shown

in Figure 6.1, it has also been found to load pages twice as fast as WebView in tests [193].

Considering the advantages of CT and drawbacks of WebViews, CT should be preferred

for displaying third-party Web content in Android securely and privately. However, there
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is limited empirical research on whether this is reflected in real-world practices.

Figure 6.1: Page load test in Chrome CT, Chrome, and a WebView within an app [193].

In this work, we conduct measurements on popular Android apps to provide novel

insights into the state of Web security in mobile apps. We analyze ∼146.5K apps, each with

over 100K users, and find ∼55.7% apps using WebViews, ∼20% using CTs, and ∼15%

using both. To infer use-cases, we detect 125 popular SDKs using WebViews, 45 SDKs

using CTs, and 34 SDKs using both. Our results indicate that WebViews were mainly used

for advertising purposes, with 46 SDKs supporting this use-case in ∼39K apps. In contrast,

CTs were predominantly used for social media integration, with 6 SDKs enabling this use-

case in nearly 23.8K apps. We combine our measurements with the extensive prior work

on the insecurity of WebViews to propose evidence-based recommendations for both app

and SDK developers. Overall, we find that even though many popular SDKs have migrated

to CTs, there are still many widely-used SDKs that have not yet migrated.

Moreover, we conduct a semi-manual analysis of the top 1K apps with the highest

number of downloads, identifying cases where apps override Android’s default behavior of

opening third-party URLs in the browser. We found 11 apps from the top 1K that masked

URLs as buttons with hyperlink-like text, which upon clicking launched an In-App Browser
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(IAB). We define an ‘In-App Browser’ as any non-browser Activity that can navigate to

an arbitrary URL. 10 out of the 11 apps implemented a WebView-based IAB, which we

examined further with comprehensive measurements. Through a rigorous manual analysis,

we uncover various behaviors such as facilitating payments, ad injection and crowdsourcing

network measurement from end-user devices.

Ultimately, we take the first step towards improving transparency regarding how mobile

apps display third-party Web content, and the real-world security and privacy implications

that follow.

6.1 Method

In this section, we describe our method for assessing the usage of WebViews and Custom

Tabs (CTs) within Android apps. First, we outline our systematic approach to a large-

scale analysis using static techniques, aimed at discerning patterns and deriving insights

at an ecosystem level. Subsequently, we describe our usage of dynamic analysis methods,

applied to a smaller, select subset of popular apps, which enables us to delve into the

specifics of their behaviour more extensively.

6.1.1 Static Analysis

Here, we delve into the details of our dataset and the methodology we use to apply static

analysis techniques to characterize the usage of WebViews and CTs in apps. Figure 6.2

helps illustrates each of the steps in our static analysis pipeline.

Dataset

We use Androzoo, a widely used repository of Android apps, which periodically fetches

Android Package Kit (APK) files from multiple app stores including the Google Play

Store [195]. Using the January 13, 2023 snapshot of Androzoo, we fetch the list of ∼6.5M

apps that have appeared in the Google Play Store. Since our aim was to gain insights about
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popular apps that are currently being used by a large population of users, we collected app

metadata from the Google Play Store, which included information such as the number of

times an app was installed and the category of the app, among other information [196].

Next, after filtering for apps that had at least 100K downloads, and were being actively

maintained, i.e., had been updated at least once after January 1, 2021, we narrowed down

to a set of 146.8K apps. For each of these 146.8K apps, we downloaded their most recent

APK from AndroZoo for further analysis.

AndroZoo
App List

App metadata
from Play Store

Select apps to
download

Updated in 2021+ and
#downloads >100k

Extract custom
WebView class names

Decompile to
Java classes

Generate
call graph Record the class which

either calls a WebView
method or raises an

intent for CT

AndroZoo
Server

Download APKs

1

2

3 4 5

Figure 6.2: Our static analysis pipeline.

Preprocessing APKs

For apps to display Web content using WebViews, they need to instantiate objects of the

Android class android.webkit.WebView as part of their Activity layout [55]. The

WebView class offers extensibility in terms of customizing the UI and other advanced con-

figuration options, so it is only natural that developers extend the WebView class to build

their own custom WebView experiences. To detect such custom WebView class implemen-

tations, our approach is two-fold. Firstly, we decompile the downloaded APK files into

Java source code using JADX, a state-of-the-art tool with the lowest failure rate as com-

pared to other tools [197, 198]. Secondly, for each class file in the source code that imports

android.webkit.WebView, we use an open-source parser to parse the Java source

code [199] and extract the names of classes which extend the WebView class. With this
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information, we can accurately pinpoint the entities in the source code which instantiate

and interact with WebViews, as we will describe in detail shortly.

The behavior of a program, specifically its control flow relating to the sequence and

dependencies of function calls, can be effectively comprehended through static analysis

techniques like call graphs. As a crucial part of our preparatory process for analysis, we

generated call graphs for all 146.8K APKs that we had procured. This was achieved using

Androguard [200], an open-source reverse engineering tool specifically designed for the

analysis of Android apps, and a component of well-established security and privacy toolkits

like Cuckoo Sandbox and Exodus respectively. Our preference for Androguard, over other

tools such as FlowDroid [201], was informed by several factors. FlowDroid, while widely

cited in literature for smaller datasets, is primarily designed for taint-tracking, and leads

to comparatively higher failure rates and increased resource overheads [202]. In contrast,

Androguard enabled us to generate call graphs for an impressive 99.8% of the apps in our

dataset. The 242 APKs that were not analyzed were discovered to be corrupt. A summary

of our dataset is available in Table 6.1.

Table 6.1: Statistics for apps that we statically analyze.

Dataset No. of apps
Play Store apps in Androzoo 6,507,222

Apps found on Play Store 2,454,488
Apps with 100k+ downloads 198,324
Apps with 100k+ downloads

and updated after 2021 146,800

Apps successfully analyzed 146,558

Measuring WebView and CT Usage

An Android app is comprised of various components, specifically Activity, Service, Con-

tent Provider, and Broadcast Receiver. Any of these elements can serve as the initial point

of interaction or “entry point” which leads to a WebView or CT [203]. Even within a sin-
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gle activity, multiple entry points exist, facilitated by lifecycle methods like onCreate()

or callbacks tied to system or GUI events, each of which could follow a different control

flow. Unlike other apps built with Java, an Android app lacks a ‘main’ function, which

could be considered the primary entry point. Therefore, in order to exhaustively identify

the usage of WebViews and CTs in an app, we traversed the app’s entire call graph via all

entry points, recording every call to WebViews and CTs. For WebView-related activity, we

recorded which methods of android.webkit.WebView (and classes which extend it)

were called, along with the names of the classes in which the respective call was made. For

CT-related activity, we similarly recorded for calls made for the CustomTabsIntent

intent class of androidx.browser.customtabs [204].

Next, to filter out app activities that are likely to host first-party Web content, we iden-

tified activities which can handle deep links to app content [205], and excluded them from

further consideration. Specifically, we used the app manifest to check if an activity has the

flag exported set to true, and contains an intent-filter of category android.intent.

category.BROWSABLE which accepts data with a scheme of either http or https.

Identifying and Labelling SDKs

To understand the reasons an app might utilize a WebView or CT, we explored whether

the Java package responsible for loading content into these components is part of a SDK

with a defined function. In the case of WebViews, we searched for calls to one of the

following methods: loadUrl, loadData or loadDataWithBaseURL. For CTs, we

searched for method calls to launchUrl. These methods would need to be invoked to

populate content. Since we had recorded which classes called these methods, we were

able to extract the package names from those classes, assuming that package names adhere

to the proper Java conventions [206]. In aggregate, we identified 141 packages, each of

which was used by more than 100 apps each. We then used data from the Google Play

SDK Index [207] and supplementary Google Search to label these packages into SDK cat-
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egories if they were known to be part of certain SDKs. Excluding Google’s Android SDK

(com.google.android) – due to its multiple essential functions – we successfully cat-

egorized 126 out of 140 packages. The remaining 14 packages either had obfuscated labels

(4), or they could not be associated with any known SDK (10).

We summarize statistics for the various types of SDKs found using WebViews and CTs

in Table 6.2. We also illustrate examples of most popular SDKs we identified as using CTs

and WebViews in Table 6.3 and Table 6.4 respectively.

Table 6.2: Statistics for use of WebViews and CTs in SDKs.

No. of SDKs
Type of SDK Use

WebViews
Use
CT

Use
both

Advertising 46 3 3
Payments 15 6 5

Development
Tools 11 7 5

Engagement 12 0 0
Social 10 6 4

Authentication 7 10 6
Unknown 10 4 4

Hybrid
Functionality 6 7 5

Utility 4 2 2
User Support 4 0 0

Total 125 45 34

Limitations

Our approach enables us to conduct a large-scale study of the usage of WebViews and CTs.

However, it is worth noting some important limitations to our methodology.

• Static analysis methods can yield false positives for various reasons [208, 209, 210].
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Table 6.3: Popular SDKs which use CTs.

Type of SDK Total
#apps SDK Name #apps

Social 23,807
Facebook 23,234
NAVER 157
Kakao 54

Authentication 7,802
Google Firebase 7,565

NAVER 81
AdobePass 55

Advertising 1,953
HyprMX 1,257

Linkvertise 383
Taboola 317

Payments 208
Juspay 77

Ticketmaster
Checkout 47

Development
Tools 172

android-customtabs 53
GoodBarber 48
Mobiroller 27

Hybrid
Functionality 87

Cube Storm 14
Scripps News 13

Utility 71
Ticketmaster 55

MyChart 16

For instance, certain logic within the app could decide not to initiate a segment of the

app using WebViews or CTs, a scenario which could arise from user interactions.

• Our investigation is targeted and relies heavily on the identification of method calls

based on their characterized behavior as detailed in Android’s documentation. Con-

sequently, our method may fall short in detecting obfuscated method calls exhibiting

similar behaviors. It’s worth noting, however, that obfuscation is relatively uncommon

in apps available on the Google Play Store [211].

• Our exhaustive approach to measuring the usage of WebViews and CTs could inadver-

tently incorporate instances displaying first-party content. For a precise identification

of WebView or CT instances used as IABs, static modeling of control or data flow in-

stigated by user interactions with the app’s GUI would be required. However, previous

studies have found static analysis methods to be insufficient for such endeavors [210,

208].
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Table 6.4: Popular SDKs which use WebViews.

Type of SDK Total
#apps SDK Name #apps

Advertising 39,163

AppLovin 27,397
ironSource 16,326
ByteDance 13,080

InMobi 10,066
Digital Turbine 8,654

Engagement 21,040

Open Measurement 11,333
SafeDK 7,427
Airship 652
Branch 514

Development
Tools 7,020

Flutter 5,568
InAppWebView 1,868

Corona 449
AdvancedWebView 386

Payments 3,212
Stripe 1,171

RazorPay 484
PayTM 400

User
Support 1,692

Zendesk 1,000
Freshchat 438

LicensesDialog 129

Social 1,686
VK 456

NAVER 406
Kakao 347

Utility 362
NAVER Maps 130

Barcode Scanner 129
Ticketmaster 64

Authentication 342
Gigya 120

NAVER 90
Amazon Identity 37

Hybrid
Functionality 256

Baby Panda World 194
SoftCraft 15

Cube Storm 14

6.1.2 Semi-manual Dynamic Analysis

Building upon the insights garnered from our large-scale static analysis of WebView and

CT utilization in apps, we meticulously carry out a semi-manual analysis of the top 1K

apps with the goal of understanding how apps implement WebView-based IABs to handle

third-party Web links.
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Dataset

From the ∼146.8K apps we had selected in subsubsection 6.1.1, we further select 1K apps

with the highest number of downloads. We programmatically download each app from the

Google Play Store and install it on a Pixel device. Dummy accounts are manually created

where necessary for the sake of accessing content within the app. Next, we manually

investigate areas of the app which potentially contain user-generated Web links. Intuitively,

we focus on sections that display user-generated content, for example, social media feeds

with user posts and comments, direct message or chat interfaces, and profile biographies

where users may link affiliated Web pages. This methodology echoes that of Zhang et

al.’s approach to studying the security design of IABs [57]. Our analysis uncovers 38

apps, solely from the social and communication categories, where users can post links.

We find that 905 of the 1K apps we analyze do not contain user-generated content. These

are predominantly utility apps such as media players, entertainment apps, stock apps, and

gaming apps. Notably, nine apps are browsers themselves, and the remaining 48 apps are

unclassifiable due to various factors, as presented in Table 6.5.

For the 38 apps where users can post links, we manually submit a link to https://exa

mple.com and follow it. We observe that approximately 71% (27 of 38) of the apps open

the links in a browser, which is the intended and default behavior for Web links in apps,

thus these apps are not studied further. Interestingly, we discover around 26% (10 of 38) of

the apps open this third-party link in a WebView-based IAB. For instance, as seen in Fig-

ure 6.3a, if a Facebook user clicks on a URL that they see on their news feed, it opens

inside a WebView-based IAB. Discord is the only app that opens the link in a CT, as seen

in Figure 6.3b. We compile these statistics in Table 6.5.

118



(a) WebView-based IAB in Facebook.

(b) CT-based IAB in Discord.

Figure 6.3: WebView and CT based IAB implementations.
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Table 6.5: Our manual classification of the top 1000 Play Store apps.

Classification of apps #apps

Users can post links. 38

Link opens in browser. 27

Link opens in a WebView. 10

Link opens in CCT. 1

Users can not post links. 905

Browser Apps. 9

Could not classify app. 48

Required a phone number. 24

App incompatibility error. 22

Required paid account. 2

Measurement Setup

We previously established that using CTs is the most efficient and secure approach to im-

plementing IABs. To investigate the motives of apps using WebViews to implement IABs,

we navigate each of the 10 WebView-based IABs to a controlled Web page hosted on our

server, and record the following measurements:

• App-WebView Interactions: Using Frida [212], a widely-used dynamic instrumentation

tool [213, 214, 215], we dynamically override all methods of android.webkit.We

bView at run-time, in order to record the WebView APIs used by the app, along with

the arguments passed. Specifically, when an app has interactions with the WebView

beyond mere loading of the URL, this information serves to provide detailed insight

for further analysis.

• JS Code Injection: An app can inject JS code into a WebView primarily via methods

evaluateJavascript and loadUrl. evaluateJavascript allows execut-

ing JS code in the WebView and retrieve the result asynchronously, while loadUrl

can be used to execute JS code once the page has finished loading, by prepending

javascript: (as the scheme) to the code. In cases where such injection is detected,
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we further record:

– Web API usage: Our controlled Web page is composed of common HTML ele-

ments [216]. The only JS script used on the page is meant to override all methods of

all Web APIs as listed in MDN Web Docs [217] and submit the intercepted requests

with parameters, back to our server [218]. Thus, when the injected JS code uses Web

APIs (e.g., Document), our server records it.

– Network Logs: We use a rooted Pixel 3 mobile device running LineageOS 19 [219]

for our measurements. LineageOS is a custom userdebug image of Android,

which enables us to record the network logs directly from Chrome’s network stack [159].

As opposed to capturing device-wide network traffic via mitmproxy, we are able

to collect detailed network logs for each Web page visit via a specific WebView

instance. Previous work has found such logs reliable for website-specific network

measurements [220].

With these comprehensive set of measurements, we can gain a nuanced understanding

of the user’s privacy posture when employing WebView-based IABs. Finally, we use our

measurement setup to investigate if the behavior of WebViews varies based on the website

a user visits. To this end, we systematically crawl the landing pages of 100 randomly

selected top sites, taken from Google Chrome’s top 1K most visited origins in the snapshot

of February 2023 (CrUX) [221], using the ten different WebViews previously identified.

In addition to the WebViews found on apps, we also crawl each site using the Android’s

System WebView Shell App which gives us a baseline for the network requests expected

to be made from a WebView without any injections [222]. These crawls were executed

with a Pixel 3 device, which was connected to an academic ISP via WiFi. For each app, a

distinct crawler was crafted to traverse the unique user interface of the app. During each

website visit, the script utilizes Android Debug Bridge (ADB) commands to: (i) launch

the app, (ii) navigate to the intended activity by simulating screen taps at predetermined

coordinates, (iii) insert the desired crawl URL, (iv) tap on the URL to instigate a visit
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within a WebView, and (v) swipe upwards to scroll through to the end of the webpage.

Following a 20-second wait to allow the page to fully load, we gather the device’s network

log. To ready the system for the next crawl, we also purge the logs on the device, terminate

the app, and wait for 1 minute.

Ethics

In conducting our manual analysis of the top 1K apps, we ensured that our experimenta-

tion methodology did not induce a high load on online services, as we manually navigated

the apps and tested how they implement IABs using only one benign URL. When carry-

ing out our automated crawls, we recognized the possibility that some of the URLs could

potentially contain sensitive or malicious content. As a proactive measure to safeguard

other users, we ensured that none of the URLs are posted publicly, thereby eliminating any

potential harm to other users on the platform.

Limitations

Our approach enables us to conduct comprehensive measurements for WebView-based

IABs in real-world Android apps. However, it is worth noting some important limitations

to our methodology.

• Our methodology inherently necessitates significant manual effort, thus constraining

our scope to a limited number of apps. We focus on the top 1K apps due to their wide

usage and significant influence on the user base. In all 10 apps where we discovered

WebView-based IABs, creation of dummy accounts was a prerequisite to accessing the

app content. Automating account creation is challenging to fully automate, given the

broad diversity in app UI designs and authentication workflows. For the same reason, a

random Monkey [223] - despite its efficacy in other studies - may also not be effective

in our context.

• During our manual analysis, we observed only 1 WebView-based IAB per app. How-
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ever, it is possible that there exist other WebView-based IABs, embedded deeper within

the app or activated by specific user behavior we didn’t replicate. While our observa-

tions might not fully encapsulate all potential privacy-invasive actions apps could be

executing in the wild, they contribute an initial, meaningful characterization of why

apps may still employ WebView-based IABs.

• Our crawl, although automated, was limited to the landing pages of the top 100 sites.

The restriction was due to rate-limiting we experienced with the Facebook app, which

restricted our account twice during the measurements, necessitating manual interven-

tion and creation of new dummy accounts. WebViews might exhibit different behaviors

on other Web pages that we did not crawl.

• During our crawls, we attempt to load the entire page by scrolling down through the end

of the page and allowing a 20-second pause for resources to load. However, we did not

emulate any additional user behaviors. WebViews could exhibit additional behavior

when the user interacts with the page (e.g., form filling). Our measurements are a

first step towards understanding the dynamics of real-world WebView-based IABs in

Android apps.

• The addJavascriptInterface method of the WebView class facilitates an in-

terface between the app native code and the JS Virtual Machine inside the WebView.

Our measurements successfully record instances when such a bridge is exposed. How-

ever, our methodology lacks the ability to monitor the communication between the JS

VM and the Java methods.

6.2 Findings

In this section, we examine the data from our measurements described in section 6.1, aim-

ing to understand the diverse ways that Web content is embedded in Android apps. We

mainly investigate the different use-cases for which apps use WebViews and CTs. Consid-

ering the security, privacy and performance issues related to WebViews, we hypothesize
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that WebViews should only be used in situations where CTs are insufficient – specifically,

in cases where the app needs to interact with the Web content, such as in a hybrid app.

Furthermore, we explore the use-cases where CTs could offer better security and privacy

protection than WebViews. We also identify the apps that use WebViews to display IABs,

and analyze the reasons and implications of this choice, particularly if it exposes users to

any security or privacy risks.

6.2.1 Usage of WebViews vs. CTs in Android apps

In subsection 6.1.1, we describe our method for analyzing the usage of WebViews and CTs

in the 146.5K most popular apps using static analysis techniques. Our analysis reveals

that ∼55.7% of the apps use WebViews, ∼20% incorporate CTs, and ∼15% make use

of both. To gain insights into the common use-cases, we’ve categorized SDKs — those

implemented by over 100 apps — utilizing WebViews and CTs, as detailed in subsubsec-

tion 6.1.1. Cumulatively, we detected 125 SDKs using WebViews, 45 SDKs using CTs,

and 34 SDKs using both, as depicted in Table 6.2. The popular SDKs we identified are

used in approximately 67% of the apps integrating WebViews, 96% of the apps adopting

CTs, and 76% of the apps utilizing both. These statistics are summarized in Table 6.6. It is

worth noting that an app could be making use of more than one SDK, and it could also have

multiple instances of WebViews or CTs, some of which might not be facilitated through the

top SDKs. We take a holistic approach to examining the use-cases of WebViews and CTs

through prevalent SDKs as it allows us to identify patterns and extract invaluable insights.

We analyzed the use-cases of WebViews and CTs in different app categories, as shown

in Table 6.4 and Table 6.3, respectively. We found that WebViews were mainly used for

advertising purposes, with 46 SDKs supporting this use-case in about 39K apps. In con-

trast, CTs were predominantly used for social media integration, with 6 SDKs enabling this

use-case in nearly 23.8K apps. Figure 6.4 illustrates the distribution of use-cases (SDKs)

per app category for the top-10 app categories that use WebViews and CTs respectively. We
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Table 6.6: Statistics of the apps using WebViews and CTs.

Dataset Total
#apps

#apps using
top SDKs

Apps using WebViews 81,720 54,833
loadUrl 77,930 50,984

addJavascriptInterface 36,899 23,087
loadDataWithBaseURL 35,680 27,474

evaluateJavascript 26,891 18,716
removeJavascriptInterface 19,684 15,034

loadData 8,275 918
postUrl 5,028 2,678

Apps using CTs 29,130 27,891
Apps using both

WebViews and CTs 21,938 16,810

observed that gaming apps (Puzzle, Simulation, Action, and Arcade) frequently used CT-

based social media SDKs, while education apps used a lower proportion of WebView-based

Ad SDKs (44%) and a higher proportion of WebView-based Payment SDKs (∼16.2%). To

acquire an exhaustive understanding of the various use-cases, we proceed with a compre-

hensive discussion of each individual use-case.

Advertising (Ads)

In-app Ads are a major source of revenue for free Android apps, and are essential to the mo-

bile app economy. These ads are usually displayed in banner or interstitial formats, show-

casing rich media, such as HTML5 content, or interactive ads, which are often streamed

directly from the internet [224]. Google’s Mobile Ads SDK empowers app developers to

monetize their app content by showing Google’s third-party ads adjacent to it. Although

the SDK supports the use of Custom Tabs (CTs), it advocates for the use of WebViews, as

they facilitate the synchronization of ads with app content [225]. Similar to Google Ads,

there are several other ad networks implementing mobile ad SDKs, many of which have

been studied by previous work [226, 227, 228, 229, 230].

Notwithstanding the benign nature of most ads served by these networks, numerous
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Figure 6.4: Distribution of SDKs per app category.

instances exist of malicious ads exploiting WebViews’ capabilities. Liu et al. discovered

instances where popular mobile ad networks manipulated WebViews to present deceptive

click ads, execute malevolent JavaScript code on the device (such as cryptojacking), redi-

rect users to harmful websites, and deceive users into downloading malicious apps [229].

Browsers, which CTs can utilize, are constantly evolving to incorporate robust defenses

against such Web threats. For instance, features such as Google’s Safe Browsing offer real-
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time threat intelligence [157], which could potentially decrease users’ exposure to harmful

content. Since WebViews are customizable, Ad SDKs can choose to disable SafeBrows-

ing, whereas Ad SDKs using CTs would be subject to SafeBrowsing unless the user has

explicitly disabled it in their browser. Research conducted by Son et al. has highlighted

instances where malicious mobile ads have exploited the access granted by WebViews to

extract sensitive information from the device’s external storage, and in certain cases, even

read the user’s local files [227]. Furthermore, there have been proposals to enforce stricter

separation of privileges between the ad SDK environment and the host app [228, 231].

Android’s CTs practically implements those goals by securely segregating the execution

context of the mobile ad from the host app.

Nevertheless, in our analyses, we found that the usage of CTs by Ad SDKs is mini-

mal. Only 3 Ad SDKs were observed using CTs in ∼2K apps, all of which also utilized

WebViews. As seen in Figure 6.5, more than 45% of apps displaying Ads via WebViews

expose a JS Bridge to the WebView using the addJavascriptInterface method,

while more than 30% apps inject JS via the evaluateJavascript method. This ex-

poses an attack surface which might not always be necessary to the intended functionality.

As shown in Table 6.4, the prevalent practice among Ad SDKs is still to use WebViews,

with 46 SDKs implemented in ∼40K apps.

Takeaway: Ad SDKs should consider implementing CTs where possible, and app

developers should carefully weigh the functionality offered by WebView-based Ad

SDKs against the attack surface they expose. Our measurements show that ad networks

primarily rely on WebViews, which have previously been exploited by malicious ads,

and CTs offer a promising replacement.
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Figure 6.5: Heatmap of WebView API method calls made via SDKs.

Engagement

App developers frequently employ engagement measurement or analytics SDKs to deter-

mine which content is most engaging, intriguing, or valuable to the user. Our data indicate

that ∼21K apps use a WebView via such an SDK. The Open Measurement (OM) SDK is

the most prevalently used, found in an estimated ∼11.3K apps. The OM SDK facilitates

third-party access to engagement measurement data. Its primary use is to measure and ver-

ify ad performance [232]. This involves checking whether an ad was visible, the duration

of its visibility, its compliance with the set performance metrics, and whether it engaged in

legitimate interactions as opposed to fraudulent views. Our manual analysis verifies that the

OM SDK is predominantly used to support the ad networks AdColony and Ogury, which

are found in ∼10.6K and ∼1.4K apps respectively, for performance measurement. We did

not detect Engagement or Measurement SDKs using CTs. Even though CTs natively mea-

sure similar user engagement signals [233], we regard the use of SDKs to measure user

engagement as a legitimate use case for WebViews. The functionality of the app, such as

determining which ad to display and when, could benefit from more detailed and custom

measurements than those currently provided by CTs.
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Development Tools

We label SDKs which provide a set of software development tools and libraries to help

streamline the process of creating apps as ‘Development Tools’ (Dev Tools). These SDKs

enable developers to cost-efficiently build high-quality apps. For instance, Google’s Flutter

is a cross-platform framework that enables developers to build apps compatible with both

Android and iOS using a single codebase [234].

In our measurements, ∼7K apps utilize WebView components provided by such Dev

Tool SDKs. Specifically, we found ∼5.5K apps leveraging url launcher, a Flutter

plugin used by apps to open a URL in a WebView [235]. Interestingly, about ∼2K apps

make use of ‘InAppWebView’, an actively maintained third-party Flutter plugin used to

embed WebView-based IABs in apps [236]. This plugin, which has earned over 2.6K stars

on GitHub, boasts functionality for visiting third-party Web content in an IAB, while also

offering the ability to inject JS code into the WebView-based IAB. We found a limited num-

ber of 172 apps using CTs via such SDKs. Notably among them, ‘android-customtabs’ is

an SDK developed to default apps to WebViews if no browser on the user’s device supports

CTs [237]. As adoption of CTs increases, we believe that support for Dev Tools SDKs

using CTs will also grow. Our discussion of the security and privacy implications of Dev

Tools SDKs utilizing either WebViews or CTs is limited, as their actual use-case depends

on the app developers incorporating them – they alone specifically do not constitute a use-

case.

Payments

Payment processing SDKs offer APIs, UI components, and other tools that make it easier

to integrate payment processing into an app. They can be used by e-commerce apps, either

directly (i.e., selling products on a store) or indirectly (i.e., displaying ads with buy buttons

next to other content) – or by freemium apps that generate revenue from in-app purchases of

premium features. Mahmud et al.’s security analysis of Android Payment SDKs uncovered
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26 SDKs that used WebViews to enable payments functionality such as checkout [238].

They reported that none of the SDKs configured WebViews securely enough to comply

with the OWASP Mobile Application Security Verification Standard [239]. In particular, 20

of those SDKs breached the PLAT4 platform requirement by exposing sensitive payment

data (e.g., credit card numbers) from the WebView to the app. As seen in Figure 6.5,

our measurements too indicate than 48.5% apps using WebViews for payments expose a

JS Bridge to the WebView. Plaid Link, a financial services SDK that enables app users

to connect their bank accounts, addressed these issues by switching to CTs [240]. They

emphasized that besides the interception of sensitive credentials, the absence of security

UI built into browsers such as Chrome (e.g., SSL verification lock icon) could allow a

malicious app to imitate their UI flow and steal the user’s credentials.

However, our own analysis showed that WebViews continue to be the prevailing choice

for Payment SDKs. We identified their use in ∼3.2K apps, facilitated by 15 distinct Pay-

ment SDKs. The most prominent SDKs that utilize WebViews include Stripe (∼1.1K apps),

RazorPay (484 apps), and PayTM (400 apps), all of which do so to facilitate checkouts.

CTs, on the other hand, were found in 6 SDKs and were implemented by a mere 208 apps.

Juspay (77 apps) and Ticketmaster Checkout (47 apps) - SDKs utilizing CTs, both also

facilitate checkouts. Juspay’s documentation outlines their use of CTs to enable payments

via Amazon Pay [241]. Intriguingly, we observed that 5 out of the 6 SDKs supporting

CTs also provide support for WebViews. We hypothesize that this is because these SDKs

default to WebViews when a browser with CT support is unavailable.

Takeaway: Payment providers should use CTs instead of WebViews for integrating

payment processing in their SDKs, as CTs provide more secure and user-friendly pay-

ment experiences. We find that most payment SDKs still use WebViews, which can

leak sensitive payment data or expose users to phishing attacks.
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User Support

User support SDKs allow developers to offer customer service options within their app,

rather than directing users to call or email. We found that ∼1.7K apps used WebViews to

enable in-app customer service. Of these, ∼85% relied on Zendesk and Freshcat SDKs to

provide live chat support. This is a suitable use-case for WebViews, as the customer service

Web component may need to access information from the app. For example, if a user

requests support for an order they made, the customer service Web component may need

to retrieve order status details from the app. This is supported by our analysis of WebView

APIs by User Support SDKs. In particular, as seen in Figure 6.5, all app using WebViews

for user support load local data into the WebView using the loadDataWithBaseURL

method, while only 45.9% apps use loadUrl. Not surprisingly, we did not find any apps

that used CTs for in-app customer service.

Social

Social Media SDKs enable developers to access social media platforms’ functionalities

such as authentication, sharing, and posting. We analyzed 6 SDKs that use CTs and 10

SDKs that use WebViews, primarily to enable authentication. We found that ∼23.8K apps

use CTs, while only ∼1.7K apps use WebViews. Among the apps that use CTs, ∼98%

of them rely on Facebook’s SDK, which deprecated WebViews in October 2021 due to

an increase in phishing attempts via WebViews [242]. With CTs, users can stay logged

in to Facebook across sessions, which increases conversion rates for apps authenticating

via Facebook. Similarly, NAVER, a South Korean online service, has also deprecated

WebViews in favor of CTs for OAuth authorization [243]. We identified 406 apps that use

WebViews and 156 apps that use CTs via NAVER’s SDK. Using CTs for authorization

requests is also in line with the best practices set out in the IETF RFC 8252 for ‘OAuth 2.0

for Native Apps’ [244].

However, not all social media SDKs have adopted CTs for authentication yet. For
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example, the SDK for VK, a Russian social media platform, uses WebViews, and is used

by 456 apps to authenticate via VK. Kakao’s SDK, another South Korean platform, also

uses WebViews in 347 apps for OAuth. Additionally, 54 apps use CTs via Kakao’s utilities

SDK, but their purpose is unclear.

Takeaway: Social media SDKs should prefer CTs, especially for authentication. Widely-

used SDKs such as Facebook and NAVER have already switched to CTs as it provides

better usable security, however there still exist SDKs such as VK and Kakao which use

WebViews.

Utility

We define ‘Utility’ SDKs as those that integrate useful features and utilities from other

online services. We measured 4 Utility SDKs that use WebViews and 2 that use CTs in our

study. For example, NAVER Maps SDK, which is used by 130 apps, provides map-related

functionality to apps. Ticketmaster’s SDK allows app developers to access Ticketmaster

features such as ticketing and booking management. It uses both WebViews and CTs for

authentication and checkout processes. We also detected 16 apps that use CTs through the

MyChart SDK, an online service that enables patients to schedule appointments and access

their medical records. We argue that WebViews are appropriate for utilities such as Maps,

where they can leverage the capabilities of WebViews, but CTs are preferable for utilities

such as MyChart, where sensitive information is involved.

Authentication

Authentication or identity SDKs help developers to add authentication and authorization

features with identity providers (IDPs). They offer methods and classes to perform tasks

such as signing in, signing up, requesting permissions, verifying credentials, and managing

sessions. The threats discussed in subsubsection 6.2.1 for social media SDKs also apply

to these SDKs. Authentication SDKs should avoid using WebViews because they handle

132



sensitive information such as credentials, which can be compromised. User experience

(UX) would also improve with CTs, as the users’ active sessions will persist, and they

can also use password managers without having to manually enter credentials. Moreover,

WebAuthn, an upcoming Web standard for secure authentication via FIDO2-based security

keys or passkeys, is supported in CTs, but not in WebViews [245].

We measured 7 identity SDKs that use WebViews in our study. They include Gigya

(120 apps), a customer identity and access management platform used by SAP, NAVER

corporate identity SDK (90 apps), and Amazon’s IDP (37 apps). However, a vast majority

of apps (∼7.8K) used CTs for authentication. Among them, ∼97% of the apps used Google

Firebase’s Authentication SDK, which allows apps to authenticate into custom IDPs and

perform reCAPTCHA checks, among other functionality [246].

Takeaway: IDPs should prefer using CTs in their SDKs to protect sensitive informa-

tion, and improve the user experience (via password managers and passkeys). Popular

SDKs, such as Google Firebase, use CTs, while some others, such as Gigya and Ama-

zon, still use WebViews.

Hybrid Functionality

Hybrid Functionality refers to the ability to combine Web technologies (HTML, CSS, and

JS) with native features of the device in an app. They offer the advantages of both Web

and native platforms – the reach and flexibility of the Web platform, and the power and

full functionality of the native platform. WebViews, which have extensive capabilities, are

designed for hybrid apps. As shown in Table 6.4 and Table 6.3, our measurements also find

apps that use both WebViews and CTs to create hybrid gaming (Baby Panda World, Cube

Storm) and news reading (Scripps News) apps.

133



6.2.2 WebView-based IABs

Android launches a Web URI Intent when a user clicks on an HTTP(S) URL within an

app. As per Android’s documentation, the default browser handles the Web URI intent on

Android 12 and later versions, unless there is an app installed that can handle URLs from

that specific domain [247]. For instance, a maps.google.com URL clicked from a so-

cial media app will launch the Google Maps app if it is present. Otherwise, it will open

in the default browser. However, our semi-manual analysis of the top 1K apps, as detailed

in subsubsection 6.1.2, revealed 11 popular social media apps that do not launch a Web

URI intent, but instead open the URL using an In-App Browser (IAB). Among them, 10

apps used WebView-based IABs to open HTTP(S) URLs. This implementation is prob-

lematic for several reasons. First, WebViews are designed to display first-party content, not

third-party content. Second, WebViews are insecure and vulnerable to various attacks, as

discussed in section 2.4. Third, WebViews have extensive functionalities that can poten-

tially be abused by apps. In this section, we will examine our comprehensive measurement

datasets, as collected in subsubsection 6.1.2, to investigate whether such exploitation is

occurring in practice.

We begin by examining App-WebView Interactions, which indicate whether and how

apps use privileged WebView API methods. We observed that Snapchat, Twitter and Reddit

did not inject any JS (via evaluateJavascript) or JS Bridge (via addJavascript

Interface) into the WebView. Pinterest injected a JS Bridge into the WebView-based

IAB that was triggered when a URL in the DM activity was clicked, but the name of the

exposed Java class was obfuscated, so we could not determine the purpose of the injection.

For the remaining 6 out of 10 apps, we detected both JS and JS Bridge injections. Face-

book and Instagram exhibited identical behavior, as did Moj and Chingari. LinkedIn and

Kik showed their own unique behaviors. We explore these 4 behaviors in more depth by

analyzing our measurements collected in subsubsection 6.1.2. To gain more insight into the

reasons behind a certain measurement, we also manually investigated using Android logs

134



collected by Logcat [248], and by using the remote GUI debugging tool for Android [249].

They facilitated our manual investigation with fine-grained and real-time information, that

helped us comprehend activity on the device. We summarize our findings of the inferred

intents for all 10 apps in Table 6.7.

Facebook and Instagram

Facebook and Instagram are both popular social media apps operated by Meta. Facebook’s

Android app has more than 8.4B downloads, and Instagram’s Android app has more than

4.6B downloads. We manually analyzed the logcat logs when a user clicks on a URL

in a Facebook news feed post or an Instagram direct message. We found that no intent

was raised and instead, a WebView opened to load the URL. Using remote debugging, we

discovered that the URL was implemented as a button that triggered the app logic to open

the WebView. Our App-WebView interaction measurements further revealed that the app

injected several JS scripts and JS Bridges into the Web content after loading. The code

was well documented and we could infer the purpose of each injection. The following JS

injections were performed:

• A JS script that inserted a Facebook Autofill script element into the page, as shown

in Listing 6.1. We believe that the script was used to populate merchant checkouts with

user information such as name, address and phone number from the user’s Facebook

profile.

(function(d, s, id){

var sdkURL = "//connect.facebook.net/en_US/iab.autofill.enhanced.

js";

var js, fjs = d.getElementsByTagName(s)[0];

if (d.getElementById(id)) {

return;

}

js = d.createElement(s);
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js.id = id;

js.src = sdkURL;

fjs.parentNode.insertBefore(js, fjs);

}(document, ’script’, ’instagram-autofill-sdk’));

Listing 6.1: JS executed by Facebook and Instagram’s WebView-based IAB to embed a JS

SDK that populates merchant checkouts with user information from their Facebook profile.

• A JS script that returned a frequency dictionary with the DOM tag counts.

• A JS script that returned locality sensitive hashes for (i) text and DOM elements, (ii)

text elements, and (iii) DOM elements. The comments indicated that this informa-

tion was collected to detect client-side cloaking based on Cloaker Catcher by Duan et

al. [250].

• A JS script that logged performance metrics to the console. It recorded the time it

took to load the DOM content and whether the page was an Accelerated Mobile Pages

(AMP) page.

In the visit to our controlled Web page via Facebook and Instagram’s WebView-based

IABs, we also recorded the methods of the Document and Element Web APIs being called,

as shown in Table 6.8. This confirmed that the injected JS code was not just injected, but

also executed.

Besides JS code, the WebViews also had access to JS bridges, namely fbpayIAWBrid

ge, metaCheckoutIAWBridge, and AutofillExtensions. We believe that the

first two enable payments via Facebook [251] and checkouts via Meta [252], if the user vis-

its a website that supports these feature (e.g., by clicking on an ad). The third one provides

the Java interface that the autofill JS code can use to retrieve user information from their

Facebook profile. The network logs revealed that Facebook and Instagram’s WebViews

used redirectors hosted at lm.facebook.com/l.php and l.instagram.com re-

spectively. They passed the intended URL and a random identifier to the redirector in the
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Table 6.8: Web APIs accessed by apps, as recorded by our controlled webpage server.

App
Name

Web API used
Interface Method

Facebook

&

Instagram

Document

getElementById
createElement

querySelectorAll
getElementsByTagName

addEventListener
removeEventListener

Element
insertBefore
hasAttribute

getElementsByTagName
HTMLBodyElement insertBefore

HTMLCollection item
NodeList item

HTMLMetaElement getAttribute

Kik
HTMLDocument querySelectorAll

HTMLMetaElement getAttribute
Document querySelectorAll

GET request, which could be exploited for tracking the user [253] (a similar redirect via

t.co was also observed for Twitter). In the crawl of top 100 websites, the WebViews did

not make any network requests other than those to the intended website its resources.

LinkedIn

LinkedIn is a social network for professionals, and its Android app has more than 1.2 bil-

lion users. It uses a WebView-based IAB to display links found in their news feed posts.

Other than visiting the intended webpage, we found that the IAB also loads resources

from radar.cedexis.com and runs JS code to interact with the Cedexis Radar API at

cedexis-radar.net. Cedexis Radar, currently part of Citrix’s NetScaler Intelligent

Traffic Management, aims to ‘collect network performance data to enable smart routing

decisions’ [254]. It offers its customers, such as LinkedIn, access to a large set of network

performance data collected from real users worldwide, in return for conducting and sharing

network measurements from their own end-users. Radar’s documentation states that it mea-

sures availability, response time, and throughput across different Cloud and CDN providers

on an end-user’s device. Radar’s Android SDK called AndroidRadar, outlines how devel-
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opers can integrate their network measurement library into their app WebViews [255].

Figure 6.6 illustrates the distribution of distinct endpoints contacted by LinkedIn’s

IAB, per different type of website crawled via the IAB. These endpoints were specific to

LinkedIn’s IAB and were not contacted by any other app’s IAB. We classified the end-

point types using Symantec Sitereview [256]. We observed that for websites with rich

content, such as News, Entertainment and Shopping, LinkedIn’s IAB contacted more than

2 trackers on average (e.g., Cedexis trackers), as well as its own services, such as CDN

(licdn.com), ad engagement APIs (px.ads.linkedin.com) and performance mon-

itoring (perf.linkedin.com). We believe that the average number of endpoints con-

tacted was smaller for Search or Technology websites because they contained less content

to interact with. Our results broadly corroborate with the functionality of Radar as de-

scribed in its documentation.
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Figure 6.6: Distribution of no. of unique endpoints contacted by LinkedIn’s IAB.

Moj and Chingari

Moj and Chingari are short video-based social media apps, developed by two different de-

velopers for the Indian audience. They have been downloaded more than 289M and 97M
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times, respectively. We discovered that both apps exhibit identical behavior in terms of

WebView injections. The injected JS code was highly obfuscated, making it difficult to un-

derstand its functionality. However, we manually inspected the names of the JS Bridges ex-

posed and the variable names used by the JS code, and inferred that the injections aimed to

insert and manage video ads via the Google Ads SDK. Our inference was supported by the

fact that one of the JS bridges injected was named googleAdsJsInterface, and the

injections included JSON data fields with Ad specifications of ads from doubleclick.net

– which is known to serve Google Ads [257]. Despite the numerous injections, we did not

observe any ads on our test page, nor did our server record any Web API usage. Upon fur-

ther inspection of the JSON objects containing the ad details for both Moj and Chingari, we

observed that although they had populated parameters about which ad to display and where

to fetch it from, the width and height were fixed to 0 – and a field ‘notVisibleReason’ was

set to ‘noAdView’. Based on this, we believe that the injected code did not execute to show

any ad because there was no compatible ad view on the page. If there were an ad view on

the page, the app’s injection could potentially help Google Ads display an ad more relevant

in the context of the app. However, to understand ad injection, we are limited to measure-

ments from our controlled Web page, as measurements from our crawl dataset could be

contaminated with activity from ad networks used by the crawled Web pages themselves.

Kik

Kik, an instant messaging application downloaded more than 176.5M times, utilizes a

WebView-based IAB to open URLs that users open in private Direct Messaging windows.

We discovered that Kik’s IAB also injects the googleAdsJsInterface bridge that we

found injected in Moj and Chingari. However, the JS code injected by Kik was different

and markedly more obfuscated than Moj and Chingari. Due to the complex nature of the JS

code, we were unable to parse the ad payload, even after manual inspection. Furthermore,

as highlighted in Table 6.8, our Web server logged the IAB’s use of only read-only Web
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APIs, confirming that there was no actual modification to the DOM of our test page. How-

ever, our network logs did highlight that the IAB communicated with ad networks. For a

more comprehensive understanding, we analyzed the distribution of endpoints contacted

by Kik’s IAB during our top site crawl, as displayed in Figure 6.7. The plot revealed that

when visiting websites rich in content, Kik’s IAB communicates with, on average, over 15

ad network endpoints. MoPub (ads.mopub.com) and InMobi (supply.inmobicdn.net) are

two prominent ad networks contacted by the IAB. From these findings, we hypothesize

that the JS code injected by Kik communicates with a multitude of ad networks, and could

be selectively inserting ads, but the its logic framework remains unclear to us.
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Figure 6.7: Distribution of no. of unique endpoints contacted by Kik’s IAB.

6.3 Concluding Remarks

In this study, we conducted extensive measurements on popular Android apps with the goal

of providing novel insights into the state of Web security in mobile apps. Our large-scale

investigation illuminated the adoption rate of CTs, a secure and user-friendly alternative to

WebViews. Furthermore, our detailed examination of WebView-based IABs in the top 1K

apps revealed practices potentially harmful to the user’s security and privacy.
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We analyzed ∼146.5K apps, each boasting over 100K users, and highlighted the diverse

use-cases of non-browser mobile apps presenting Web content via WebViews and CTs. We

contend that for use-cases like Authentication and Authorization, using WebViews contra-

venes the least privilege principle. As a preferable alternative, CTs provided by browsers

such as Chrome not only bolster security, but also enhance user experience through shared

state with the user’s default browser, a consistent and secure UI, and faster load times.

Our study is a first step in quantifying the adoption of CTs in widely used apps. Build-

ing upon previous work, we take an evidence-based approach in highlighting the risks for

SDKs persisting in using WebViews. We note that many popular SDKs have already mi-

grated to CTs; however, a considerable number of extensively used SDKs lag behind. We

recognize SDKs that measure user engagement of first-party Web content, provide in-app

support, and offer other utilities as legitimate use-cases of WebViews. Future research

could focus on adapting Ad SDKs, the most common WebView application, to CTs, tak-

ing advantage of innovations like Partial CTs, which enable developers to launch resizable

inline CTs in response to native ads, as showcased by Google in 2023 [258].

Typically, clicking on HTTP(S) URLs should invoke a Web URI Intent, which is then

handled either by an appropriate app or the default browser. However, our study found

11 apps from the top 1K that disguised URLs as buttons with hyperlink-like text, which

upon clicking launched an IAB, instead of raising an intent. A deeper probe revealed a

variety of unique behaviors. Apps such as Facebook and Instagram used this method to

facilitate payments and checkouts, despite the potential for misuse by malicious websites

to pilfer personal user information. Other apps like Moj, Chingari, and Kik did so for

potential ad injection, while LinkedIn incorporated a network measurement SDK to source

performance metric data from user devices. Despite the seemingly benign behaviors found

in WebView-based IABs, we suggest that the extensive attack surface they expose renders

the trade-off inadequate. Although some apps offer an option to disable in-app browsers for

privacy-focused users [259], we recommend apps make it an opt-in feature for improved
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user safety.

Our research forms the groundwork for improving transparency regarding how mobile

apps display third-party Web content. Future research could consider including WebView

usage for such content as a metric in the ‘privacy nutrition labels’. Educating users can both

empower users with more agency over their online safety, while encouraging the ecosystem

of apps and SDKs to adopt safer practices [260, 261]. Considering the multitude of people

who use android devices for Web browsing every day, app and SDK developers can improve

user safety and foster users’ trust in the ecosystem by making secure choices, such as

implementing Custom Tabs wherever possible.
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CHAPTER 7

CONCLUSION

This dissertation presents a series of empirical investigations addressing key issues in web

security and privacy, ranging from authentication and anti-abuse measures on digital plat-

forms to the privacy concerns of users using web browsers and non-browser mobile apps.

A recurrent pattern discernible across our research exhibits that while the community in-

novates with new technologies to fulfill legitimate needs or use-cases – typically accom-

panied by proposed safeguards – the actual deployment often prioritizes the use-case at

the expense of the prescribed precautions. This oversight creates a gaping vulnerability

that malicious actors may exploit, thereby undermining trust in the constituent parts of the

ecosystem. For instance, in our evaluation of user’s web privacy, potent features like native

app communication via WebSockets, and hybrid app development via WebViews, both run

the risk of being manipulated for undue access. With the user’s privacy hanging in the bal-

ance, we bear the responsibility to consistently create and enforce protective measures that

facilitate legitimate use-cases without encroaching on user privacy. Since the publication

of our findings, Chrome and Brave browsers have already begun limiting local network

communication for their users.

In our evaluation of the tangible security merits of current passwordless authentica-

tion deployments, we noted that the theoretically proposed guardrails intended for pro-

tection against compromised clients prove ineffective. This failure isn’t only a result of

overlooked aspects during implementation but is also due to the compartmentalized nature

of the ecosystem. While the protocol itself is flexible enough to allow the development of

additional features through extensions, which can cater to specific scenarios such as pay-

ments – where the authentication is required not only for the service but also for the trans-

action data – it requires independent implementation by numerous entities (i.e., authenti-
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cator, operating system, client/browser, online service). This is a prerequisite for achieving

widespread acceptance. In the case of the transaction confirmation extension, we noted that

despite some parties implementing it, the proposal faded away due to other parties’ failure

to follow suit in a timely manner. Furthermore, each player in the ecosystem operates inde-

pendently, often neglecting the cumulative effect their actions might have. In particular, the

FIDO Alliance’s Metadata Service (MDS), which is pivotal in providing trust information,

including vulnerability alerts for authenticators that support passwordless authentication,

is unfortunately isolated from various vendors. Our measurements indicate that even when

Samsung publicly disclosed a major vulnerability in their widely used flagship mobile de-

vices, the MDS did not update to reflect the vulnerabilities. Consequently, this undermines

the overall trust in the ecosystem. As we wait for the ecosystem to evolve to a point where

all components function in harmony, it’s necessary to devise interim solutions, some of

which we examine in this thesis.

Furthermore, trust in the ecosystem is also undermined when web platforms are con-

sidered easy to manipulate. My work on measuring view fraud abuse on YouTube shows

that the impact of organic view fraud campaigns is rather short-lived. However, given that

the campaigns persist over time, we conclude that the view fraud ecosystem exhibits snake

oil properties.

As a community, it is incumbent upon us to measure such gaps between recommenda-

tions made in theory and reality at regular intervals. Even after identifying what to measure,

conducting accurate measurements can be challenging as real-world implementations are

often complex and opaque to an external researcher. In my thesis, I demonstrate measure-

ment techniques which allow us to model reality in various contexts, and generate precise,

actionable recommendations that can be adopted broadly and readily. As new features get

added to the Web, our community needs to continue identifying and closing the gaps, in

order to increase trust within the online ecosystem.
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[110] S. Wiefling, L. Lo Iacono, and M. Dürmuth, “Is This Really You? An Empirical
Study on Risk-Based Authentication Applied in the Wild,” in ICT Systems Security
and Privacy Protection, 2019.

[111] Secured Transfer, https://www.bankofamerica.com/security-center/faq/additional-
security-features/.

[112] T. Koide, D. Chiba, and M. Akiyama, “To Get Lost is to Learn the Way: Automat-
ically Collecting Multi-step Social Engineering Attacks on the Web,” in ACM Asia
Conference on Computer and Communications Security (AsiaCCS), 2020.

[113] Secure Payment Confirmation, https://www.w3.org/TR/secure-payment-confirmation/.

[114] J. Prakash et al., “Countering Concurrent Login Attacks in “Just Tap” Push-based
Authentication: A Redesign and Usability Evaluations,” in IEEE European Sympo-
sium on Security and Privacy (EuroS&P), 2021.

[115] Chromium Issue 1341134, https://bugs.chromium.org/p/chromium/issues/detail?
id=1341134#c18.

[116] Plan a passwordless authentication deployment in Azure Active Directory, https:
/ / learn . microsoft . com / en - us / azure / active - directory / authentication / howto -
authentication-passwordless-deployment.

[117] FIDO Alliance - Passkeys, https://fidoalliance.org/passkeys/.

[118] Touch ID - Attestation, https://developer.apple.com/forums/thread/708982.

[119] FIDO Alliance - PSD2 Compliance, https://fidoalliance.org/psd2-compliance/.

154

https://www.bleepingcomputer.com/news/security/mfa-fatigue-hackers-new-favorite-tactic-in-high-profile-breaches/
https://www.bleepingcomputer.com/news/security/mfa-fatigue-hackers-new-favorite-tactic-in-high-profile-breaches/
https://help.duo.com/s/article/7615
https://help.duo.com/s/article/7615
https://media.fidoalliance.org/wp-content/uploads/2020/08/FIDO-Alliance-Transaction-Confirmation-White-Paper-08-18-DM.pdf
https://media.fidoalliance.org/wp-content/uploads/2020/08/FIDO-Alliance-Transaction-Confirmation-White-Paper-08-18-DM.pdf
https://media.fidoalliance.org/wp-content/uploads/2020/08/FIDO-Alliance-Transaction-Confirmation-White-Paper-08-18-DM.pdf
https://www.bankofamerica.com/security-center/faq/additional-security-features/
https://www.bankofamerica.com/security-center/faq/additional-security-features/
https://www.w3.org/TR/secure-payment-confirmation/
https://bugs.chromium.org/p/chromium/issues/detail?id=1341134#c18
https://bugs.chromium.org/p/chromium/issues/detail?id=1341134#c18
https://learn.microsoft.com/en-us/azure/active-directory/authentication/howto-authentication-passwordless-deployment
https://learn.microsoft.com/en-us/azure/active-directory/authentication/howto-authentication-passwordless-deployment
https://learn.microsoft.com/en-us/azure/active-directory/authentication/howto-authentication-passwordless-deployment
https://fidoalliance.org/passkeys/
https://developer.apple.com/forums/thread/708982
https://fidoalliance.org/psd2-compliance/


[120] Web Authentication: An API for accessing Public Key Credentials, Level 1, https:
//www.w3.org/TR/webauthn-1/.

[121] Remove unimplemented extensions, https://github.com/w3c/webauthn/issues/1386.
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