Equitable Security: Optimizing Distribution of Nudges and Resources
Elissa M. Redmiles, John P. Dickerson, Krishna Gummadi and Michelle L. Mazurek
eredmiles@cs.umd.edu

How can firms optimize the tradeoff between security nudges and levels of risk and investment for end-users, keeping fairness in mind?

Motivation & Method

We ran behavioral economics games on AMT and were able to model user security decisions with high accuracy ($R^2=0.61$).

Users make **boundedly rational cost benefit optimized security decisions** [1]. Yet, sometimes security nudges encourage users toward irrational behavior.

Users have a **limited compliance budget**. We present a **mechanism design** to mathematically select values of different system features, maximizing utility for both users and online services.

Behavioral Economics Experimental System

Cost is defined as wage-earning time loss

$$C_{2fa} = (T_{signup} + \sum T_{login}) \cdot \text{wagemturk}$$

Utility of 2FA is defined the $$$ savings if a hack occurred

$$U_{2fa} = P[(H) \cdot \text{Maxbank}]$$

Rational behavior achieved when choice utility > cost

Firm’s Utility function:

$$f^s(B_i, u_i) = \sum_{i=1}^{n} g(B_i, u_i) - \alpha(B_i, u_i)$$

$$f^s : (B, U)^n \rightarrow \mathbb{R}$$

User’s Utility function:

$$f^u : (\text{TYPE}, B, R) = g(B_i, t_i, R_i) - \alpha(B_i, t_i, R_i)$$

where u_i has some $t_i \in \text{TYPE}$

User behavior Adjustment:

$$\text{if } \left(\sum_{d=0}^{e} \text{budget} \right) < \sum_{i=0}^{e} \text{cost}(B_i, U_i) : m_i \times t_i \times r_i$$

where budget is the users’ overall “compliance budget” across digital accounts (see Beaudent et al. 2009)

Firm solves for optimal values of B_s, B_q, S_s, S_q and m, r for some user u_i for max(profit)

Future work: impose fairness constraints, simulate impact on profit & overall user security

- **Risk fairness:** all people in the system should have as equal as possible risk of a negative outcome.
- **Effort fairness:** assignment of resources / messages to minimize user variance in cost (effort).

References