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Abstract
Over 65% of web traffic originates from mobile devices. However,
much of this traffic is not from mobile web browsers but rather
from mobile apps displaying web content. Android’s WebView has
been a common way for apps to display web content, but it entails
security and privacy concerns, especially for third-party content.
Custom Tabs (CTs) are a more recent and recommended alternative.

In this paper, we conduct a large-scale empirical study to ex-
amine if the top ∼146.5K Android apps use WebViews and CTs
in a manner that aligns with user security and privacy considera-
tions. Our measurements reveal that most apps still use WebViews,
particularly to display ads, with only ∼20% using CTs. We also
find that while some popular SDKs have migrated to CTs, others
(e.g., financial services) benefiting from CT’s properties have not
yet done so. Through semi-manual analysis of the top 1K apps, we
uncover a handful of apps that use WebViews to show arbitrary
web content within their app while modifying the web content
behavior. Ultimately, our work seeks to improve our understanding
of how mobile apps interact with third-party web content and shed
light on real-world security and privacy implications.

CCS Concepts
• Security and privacy → Web application security; • Infor-
mation systems→ Browsers.
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1 Introduction
Mobile devices are ubiquitous in today’s digital world. According
to a recent estimate, more than 65% of web traffic originates from
these devices [25]. This traffic includes users browsing the web via
mobile browsers as well as various mobile apps that display web
content. Examples include hybrid mobile apps that render a web
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page in full-screen mode within an app, in-app advertisements that
show free content alongside ads, and web links that users follow
from within an app.

Traditionally, such functionality has been achieved using the
android.webkit.WebView class, or simply ‘WebView’. WebView
is a component of Android’s View class that allows developers to
embed web pages into their app’s interface [12]. Android suggests
using it only for trusted first-party content, as it gives the app
more control over the webpage, such as executing Javascript (JS)
code, intercepting requests, and enabling interaction between the
webpage and the app’s native code [11]. These properties support
hybrid app experiences that can be useful in many contexts [88, 89].
However, nothing prevents an app from loading untrusted third-
party content in a WebView, which exposes a large attack surface
as previously identified (see Table 1).

On the other hand, Custom Tabs (CT) is a feature designed for
securely and efficiently displaying third-party web content [60].
It has been available in Android devices since 2015 [1]. With CTs,
developers can provide a customized browser experience within
their app using Android browsers such as Chrome. It loads the
webpage with access to the user’s default browser cookies but
does not manipulate the page itself [11, 28]. CT offers the latest
browser experience, with a secure user interface (e.g., TLS lock
icon), without requiring extra development effort. It has also been
found to load pages up to twice as fast as WebView, as shown in
Figure 7 in the Appendix [2]. We summarize the advantages of
using CTs over WebViews for displaying third-party web content
in Table 1. However, there is limited empirical research on whether
developers leverage CT’s advantages in the real world.

In this paper, we conduct large-scale measurements of popular
Android apps to understand how they interact withweb content.We
analyze ∼146.5K apps, each with over 100K users, and find ∼55.7%
apps using WebViews, ∼20% using CTs, and ∼15% using both. To
infer use cases, we detect 125 popular SDKs using WebViews, 45
using CTs, and 34 using both. Our results indicate that WebViews
weremainly used for advertising purposes, with 46 SDKs supporting
this use-case in ∼39K apps. In contrast, CTs were predominantly
used for social media integration, with 6 SDKs enabling this use-
case in nearly 24K apps. We combine our measurements with the
extensive prior work on the insecurity of WebViews to propose
evidence-based recommendations for both app and SDK developers.
Overall, we find that there are still many widely-used SDKs that
would benefit from migrating from WebViews to CTs.

In addition, we conduct a semi-manual analysis of the top 1K
apps, identifying cases where apps override Android’s default be-
havior of opening third-party URLs in a browser. We found 11 apps
launched an In-App Browser (IAB), defined as any non-browser
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Comparison Attribute WebViews CustomTabs
Attack vectors from

third-party web content
or malicious app code

✗ Vulnerable due to bidirectional access
between web and app contexts [42, 42, 61, 69, 72, 76, 82, 82, 95, 97, 97].

✓ Untrusted web content loads in browser context
isolated from app context (no bidirectional access).

Phishing ✗ Vulnerable to cookie/credential stealing [54, 96].
✓ Supports passkeys (phishing resistant).

✓ Secure UI (e.g., TLS icon).
✗ Side-channel attacks exist [43].

Browser Fingerprinting ✗ WebViews are significantly
more vulnerable [90, 91].

✓ Same default web browser
used across multiple apps.

Page Load Time ✗ Slower, doesn’t allow pre-initialization. ✓ Faster, allows pre-initialization [2].

User Experience ✗ User needs to authenticate repeatedly. ✓ User’s active sessions are restored
using existing browser cookies.

Table 1: Advantages of using CustomTabs over WebViews for displaying third-party web content.

Activity that can navigate to an arbitrary URL. Of these 11 apps, 10
apps implemented a WebView-based IAB, which we experimented
with further. We uncover unique behaviors of these apps (with mil-
lions of downloads) modifying the web content, such as facilitating
payments, ad injection, and crowdsourcing network measurement
from end-user devices.

Ultimately, this work serves as a key step in better understanding
howmobile apps interact with web content, particularly third-party
content. Through our findings, we identify real-world security and
privacy implications of mobile app behaviors and provide recom-
mendations for mobile SDK and app developers.

2 Related Work
While WebView-based mobile apps offer a seamless and enriched
user experience with relatively low development demands, they
bear the risk of potential security and privacy concerns. Apps uti-
lizing WebViews can inject Javascript (JS) code into webpages,
enable bidirectional communication between native Java objects
and webpages through JS Bridges, and control network requests.
In 2011, Luo et al. introduced the threat model for WebViews, il-
lustrating how they could serve as attack vectors for webpages
within malicious apps or for malicious webpages embedded in be-
nign apps [72]. Since then, numerous static analysis approaches
have been proposed to detect data leaks and code injection attacks
through JS Bridges [42, 82, 97]. Additionally, vulnerabilities and
bugs introduced by interactions with the JS Bridge [61, 69, 76] and
native app event handlers [95] have been identified. WebViews
have also been manipulated to expand traditional web-based at-
tacks, such as phishing [96] and browser fingerprinting [90, 91].
Moreover, malware has been discovered exploiting the capabilities
of WebViews to evade detection [87]. As apps have become more
complex, the threat landscape has also evolved. Recently, Zhang
et al. examined how identity confusion in WebView-based apps
can expose privileged APIs of one app component to an unrelated
component [98, 102].

WebViews possess such expansive access rights primarily be-
cause they are intended to present trusted first-party content. How-
ever, no restriction prevents them from loading third-party content.
Tuncay et al. suggested a policy-based strategy modeled after the
Same-Origin-Policy, permitting granular control over web origins
within WebViews [92]. Nevertheless, in practice, Zhang et al. iden-
tified instances of inter-party manipulation of web resources in
WebViews [100]. The majority of these manipulations served be-
nign purposes like customizing web services or enabling hybrid

functionality. Yet, there were a handful of malicious instances aimed
at stealing cookies or user credentials. It is worth noting here that
Zhang et al.’s approach uses static analysis techniques to generate
the URLs passed into the WebView. This means their analysis is
constrained to URLs that already exist in the app in some form
prior to its execution. Therefore, their findings do not extend to
IABs implemented with WebViews. In other words, if a user clicks
a third-party link seen in a social media app and that link opens in
a WebView, this behavior is not included in their study because the
URL was not originally present in the app.

In order to mitigate these risks, Android encourages employing
CT for any non-first-party or untrusted web content [12]. Beer et
al. recently proposed that the callback mechanism of CTs could be
exploited as a cross-site oracle [43, 44], which highlights the need
for developers to follow secure practices even when implementing
CTs. That said, the attacks demonstrated on CTs so far are far less
impactful than the ones discovered existing in the wild for Web-
Views. To date, there has been limited empirical investigation into
the real-world adoption of CT. Zhang et al. studied IAB implemen-
tations in 25 popular apps from a usable security perspective [101].
Their findings indicate that IABs leveraging CT generally exhibit
secure behaviors, whereas every single IAB utilizing WebViews
presented at least one insecure behavior. Through our research, we
offer an extensive characterization of WebView and CT adoption,
drawing from a large-scale evaluation of popular Android apps.
Furthermore, we contribute to a comprehensive understanding of
privacy-invasive behavior within WebView-based IABs found in a
smaller sample of widely used apps.

3 Method
In this section, we describe our method for assessing the usage of
WebViews and Custom Tabs (CTs) within Android apps. First, we
outline our systematic approach to a large-scale analysis using static
techniques aimed at discerning patterns and deriving insights at an
ecosystem level. Subsequently, we describe our usage of dynamic
analysis methods, applied to a smaller, select subset of popular apps,
which enables us to delve into the specifics of their behavior.

3.1 Static Analysis
Here, we delve into the details of our dataset and the methodology
we use to apply static analysis techniques to characterize the usage
of WebViews and CTs in apps. Figure 1 helps illustrates each of the
steps in our static analysis pipeline.
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Figure 1: Our static analysis pipeline. (1) We fetch the list of Android apps available in AndroZoo [39] and for each app, we
fetch its metadata from Google Play Store. (2) For apps that have been updated at least once in the last two years, and have been
downloaded more than 100K times, we download their most recent APK from AndroZoo. (3) Next, we decompile each APK
(using JADX [57]) and extract the names of classes that extend the WebView class. (4) Finally, we generate call graphs for each
APK (using Androguard [10]) and (5) record the instances where a WebView method is called or a CT is initialized.

3.1.1 Dataset. We use Androzoo, a widely used repository of An-
droid apps, which periodically fetches Android Package Kit (APK)
files from multiple app stores, including the Google Play Store [39].
Using the January 13, 2023 snapshot of Androzoo, we fetch the list
of ∼6.5M apps that have appeared in the Google Play Store. Since
our aim was to gain insights about popular apps that are currently
being used by a large population of users, we collected app meta-
data from the Google Play Store, which included information such
as the number of times an app was installed and the category of the
app, among other information [20]. Next, after filtering for apps
that had at least 100K downloads and were being actively main-
tained, i.e., had been updated at least once after January 1, 2021, we
narrowed it down to a set of 146.8K apps. For each of these 146.8K
apps, we downloaded their most recent APK from AndroZoo for
further analysis.

Dataset No. of apps
Play Store apps in Androzoo 6,507,222
Apps found on Play Store 2,454,488

Apps with 100k+ downloads 198,324
Apps with 100k+ downloads

and updated after 2021 146,800

Apps successfully analyzed 146,558
Table 2: Statistics for apps that we statically analyze.

3.1.2 Preprocessing APKs. For apps to display web content using
WebViews, they need to instantiate objects of the Android class
android.webkit.WebView as part of their activity layout [12]. The
WebView class offers extensibility in terms of customizing the UI
and other advanced configuration options, so it is only natural
that developers extend the WebView class to build their own cus-
tom WebView experiences. To detect such custom WebView class
implementations, our approach is two-fold. Firstly, we decompile
the downloaded APK files into Java source code using JADX, a
state-of-the-art tool with the lowest failure rate compared to other
tools [57, 74]. Secondly, for each class file in the source code that

imports android.webkit.WebView, we use an open-source parser
to parse the Java source code [80] and extract the names of classes
that extend the WebView class. With this information, we can accu-
rately pinpoint the entities in the source code that instantiate and
interact with WebViews, as we will describe in detail shortly.

The behavior of a program, precisely its control flow relating
to the sequence and dependencies of function calls, can be effec-
tively comprehended through static analysis techniques like call
graphs. As a crucial part of our preparatory process for analysis,
we generated call graphs for all 146.8K APKs we had procured.
This was achieved using Androguard [10], an open-source reverse
engineering tool specifically designed to analyze Android apps,
and a component of well-established security and privacy toolkits
like Cuckoo Sandbox and Exodus, respectively. Our preference for
Androguard, over other tools such as FlowDroid [40], was informed
by several factors. FlowDroid, while widely cited in the literature
for smaller datasets, is primarily designed for taint-tracking and
leads to comparatively higher failure rates and increased resource
overheads [84]. In contrast, Androguard enabled us to generate
call graphs for 99.8% of the apps in our dataset. The remaining 242
APKs were discovered to be broken. A summary of our dataset is
available in Table 2.

3.1.3 Measuring WebView and CT Usage. An Android app is com-
prised of various components, specifically Activity, Service, Content
Provider, and Broadcast Receiver. Any of these elements can serve
as the initial point of interaction or “entry point” which leads to
a WebView or CT [49]. Multiple entry points exist within a single
activity, facilitated by lifecycle methods like onCreate() or call-
backs tied to system or GUI events, each of which could follow a
different control flow. Unlike other apps built with Java, an Android
app lacks a ‘main’ function, which could be considered the primary
entry point. Therefore, in order to exhaustively identify the usage
of WebViews and CTs in an app, we traversed the app’s entire call
graph via all entry points, recording every call to WebViews and
CTs. For WebView-related activity, we recorded the names of the
WebView class methods that were called, along with the names of
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the classes in which the respective call was made. For CT-related ac-
tivity, we similarly recorded calls made for the CustomTabsIntent
intent class of androidx.browser.customtabs [16].

Next, to filter out app activities that are likely to host first-party
web content, we identified activities that can handle deep links to
app content [15] and excluded them from further consideration.
Specifically, we used the app manifest to check if an activity has
the flag exported set to true, and contains an intent-filter of the
category android.intent.category.BROWSABLE, which accepts
data with a scheme of either http or https.

3.1.4 Identifying and Labelling SDKs. To understand the reasons
why an app might utilize a WebView or CT, we explored whether
the Java package responsible for invoking the methods that popu-
late content into these components is part of an SDK with a defined
function. In the case ofWebViews, we searched for calls to one of the
following methods: loadUrl, loadData, or loadDataWithBaseURL.
For CTs, we searched for method calls to launchUrl. These meth-
ods would need to be invoked to populate content. Since we had
recorded which classes called these methods, we were able to ex-
tract the package names from those classes, assuming that package
names adhere to the proper Java conventions [26]. In aggregate,
we identified 141 packages, each of which was used by more than
100 apps. We then used data from the Google Play SDK Index [21]
and supplementary Google Search to label these packages into SDK
categories if they were known to be part of certain SDKs. Excluding
Google’s Android SDK (com.google.android) – due to its multiple
essential functions – we successfully categorized 126 out of 140
packages. The remaining 14 packages either had obfuscated labels
(4), or they could not be associated with any known SDK (10).

We summarize statistics for the various types of SDKs found
using WebViews and CTs in Table 3. We also illustrate examples of
the most popular SDKs we identified as using WebViews and CTs
in Tables 4 and 5 respectively.

No. of SDKs
Type of SDK Use

WebViews
Use
CT

Use
both

Advertising 46 3 3
Payments 15 6 5

Development
Tools 11 7 5

Engagement 12 0 0
Social 10 6 4

Authentication 7 10 6
Unknown 10 4 4
Hybrid

Functionality 6 7 5

Utility 4 2 2
User Support 4 0 0

Total 125 45 34
Table 3: Statistics for use of WebViews and CTs in SDKs.

Type of SDK Total
#apps SDK Name #apps

Advertising 39,163

AppLovin 27,397
ironSource 16,326
ByteDance 13,080
InMobi 10,066

Digital Turbine 8,654

Engagement 21,040

Open Measurement 11,333
SafeDK 7,427
Airship 652
Branch 514

Development
Tools 7,020

Flutter 5,568
InAppWebView 1,868

Corona 449
AdvancedWebView 386

Payments 3,212
Stripe 1,171

RazorPay 484
PayTM 400

User
Support 1,692

Zendesk 1,000
Freshchat 438

LicensesDialog 129

Social 1,686
VK 456

NAVER 406
Kakao 347

Utility 362
NAVER Maps 130

Barcode Scanner 129
Ticketmaster 64

Authentication 342
Gigya 120
NAVER 90

Amazon Identity 37

Hybrid
Functionality 256

Baby Panda World 194
SoftCraft 15

Cube Storm 14
Table 4: Popular SDKs which use WebViews.

Type of SDK Total
#apps SDK Name #apps

Social 23,807
Facebook 23,234
NAVER 157
Kakao 54

Authentication 7,802
Google Firebase 7,565

NAVER 81
AdobePass 55

Advertising 1,953
HyprMX 1,257
Linkvertise 383
Taboola 317

Payments 208 Juspay 77
Ticketmaster
Checkout 47

Development
Tools 172

android-customtabs 53
GoodBarber 48
Mobiroller 27

Hybrid
Functionality 87 Cube Storm 14

Scripps News 13

Utility 71 Ticketmaster 55
MyChart 16

Table 5: Popular SDKs which use CTs.
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3.1.5 Limitations. Our approach enables us to conduct a large-
scale study of the usage of WebViews and CTs. However, it is worth
noting some important limitations to our methodology.
• A recognized limitation of static analysis methods is their ten-
dency to produce false positives. False positives may occur for
various reasons. For instance, in our case, specific logic within
an application might prevent initiating a code block that utilizes
WebViews or Custom Tabs (CTs), often due to user interactions.
Despite this, static analysis has been effectively employed in
previous studies for large-scale measurements [45, 70, 94].

• Our investigation targets the identification of method calls based
on their characterized behavior as detailed in Android’s docu-
mentation. Consequently, our methodmay fall short in detecting
obfuscated method calls exhibiting similar behaviors. It is worth
noting, however, that obfuscation is relatively uncommon in
apps available on the Google Play Store [52].

• Our approach assumes that a third-party SDK would serve third-
party web content, however that might not necessarily always
be true. For precise identification of the web content loaded,
static modeling of control or data flow instigated by user inter-
actions with the app would be required. However, this has been
identified as a limitation to static analysis methods [45, 94].

3.2 Semi-Manual Dynamic Analysis
Building upon the insights garnered from our large-scale static
analysis of WebView and CT utilization in apps, we meticulously
carry out a semi-manual analysis of the top 1K apps with the goal
of understanding how apps implement WebView-based IABs to
handle third-party web links. In this case, we specifically consider
WebViews, which display third-party web content a user navigates
to by clicking on an external link, rather thanweb content belonging
to a third-party SDK, as we did with large-scale static analysis.

3.2.1 Dataset. From the ∼146.8K apps we had selected in Sec-
tion 3.1.1, we further select 1K apps with the highest number of
downloads. We programmatically download each app from the
Google Play Store and install it on a Pixel device. Dummy accounts
are manually created where necessary to access content within the
app. Next, we manually investigate areas of the app that potentially
contain user-generated web links. Intuitively, we focus on sections
that display user-generated content, for example, social media feeds
with user posts and comments, direct message or chat interfaces,
and profile biographies where users may link affiliated web pages.
This methodology echoes that of Zhang et al.’s approach to studying
the security design of IABs [101]. Our analysis uncovers 38 apps,
incidentally belonging solely to the social and communication cate-
gories, where users can post links. We find that 905 of the 1K apps
we analyze do not contain user-generated content. These are pre-
dominantly utility apps such as media players, entertainment, stock,
and gaming apps. Notably, nine apps are browsers themselves, and
the remaining 48 apps are unclassifiable due to various factors, as
presented in Table 6.

For the 38 apps where users can post links, we manually submit
a link to https://example.com and follow it. We observe that
approximately 71% (27 of 38) of the apps open the links in a browser,
which is the intended and default behavior for web links in apps,
thus these apps are not studied further. Interestingly, we discovered

around 26% (10 of 38) of the apps open this third-party link in a
WebView-based IAB. For instance, if a Facebook user clicks on a
URL they see on their feed, it opens inside a WebView-based IAB.
Discord is the only app that opens the link in a CT. For reference,
Figure 2 differentiates the UI flow between WebViews and CTs, and
Table 6 summarizes these statistics.

Classification of apps #apps

Users can post links. 38
Link opens in browser. 27
Link opens in a WebView. 10
Link opens in CT. 1

Users can not post links. 905
Browser Apps. 9
Could not classify app. 48
Required a phone number. 24
App incompatibility error. 22
Required paid account. 2

Table 6: Statistics for our manual classification of hyperlink
clicking behavior in the top 1K Android apps on Play Store.

3.2.2 Measurement Setup. We previously established that CTs are
the most efficient and secure approach to implementing IABs. To
investigate the motives of apps usingWebViews to implement IABs,
we navigate each of the 10WebView-based IABs to a controlled web
page hosted on our server and record the following measurements:
• App-WebView Interactions: Using Frida [19], a widely-used dy-
namic instrumentation tool [38, 78, 99], we dynamically override
all methods of android.webkit.WebView at run-time in order
to record the WebView APIs used by the app, along with the
arguments passed. Specifically, when an app interacts with Web-
View beyond mere loading of the URL, this information provides
detailed insight for further analysis.

• JS Code Injection: An app can inject JS code into a WebView pri-
marily via methods evaluateJavascript and loadUrl. evalu-
ateJavascript allows executing JS code in the WebView and
retrieving the result asynchronously, while loadUrl can be used
to execute JS code once the page has finished loading by prepend-
ing javascript: (as the scheme) to the code. In cases where
such injection is detected, we further record:
– Web API usage: We host the HTML5 test page (composed of
common HTML elements) developed by Bracco et al. [46] as
our controlled web page. The only JS script used on the page
is meant to override all methods of all Web APIs as listed
in MDN Web Docs [75] and submit the intercepted requests
with parameters back to our server [64]. Thus, when the
injected JS code uses any Web APIs, our server records it.

– Network Logs: We use a rooted Pixel 3 mobile device run-
ning LineageOS 19 [23] for our measurements. LineageOS
is a custom userdebug image of Android, which enables us
to record the network logs directly from Chrome’s network
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(a) WebView-based IAB in Facebook. (b) CT-based IAB in Discord.

Figure 2: Screenshots showing WebView and CT-based IAB implementations in Facebook and Discord, respectively.

stack [59]. As opposed to capturing device-wide network traf-
fic via mitmproxy, we are able to collect detailed network logs
for each web page visit via a specific WebView instance. Pre-
vious work has found such logs reliable for website-specific
network measurements [67].

With this comprehensive set of measurements, we can gain a nu-
anced understanding of the user’s privacy posture when employing
WebView-based IABs. Finally, we use our measurement setup to in-
vestigate if the behavior of WebViews varies based on the website a
user visits. To this end, we systematically crawl the landing pages of
100 randomly selected top sites, taken fromGoogle Chrome’s top 1K
most visited origins in the snapshot of February 2023 (CrUX) [83],
using the ten different WebViews previously identified. In addition
to the WebViews found on apps, we also crawl each site using the
Android’s SystemWebView Shell App which gives us a baseline for
the network requests expected to be made from a WebView with-
out any injections [32]. These crawls were executed with a Pixel 3
device, which was connected to an academic ISP via WiFi. For each
app, a distinct crawler was crafted using Android Debug Bridge
(ADB) commands to traverse the unique user interface of the app.
During each website visit, the script utilizes Android Debug Bridge
(ADB) commands to (i) launch the app, (ii) navigate to the intended
activity by simulating screen taps at predetermined coordinates,
(iii) insert the desired crawl URL, (iv) tap on the URL to instigate a
visit within a WebView, and (v) swipe upwards to scroll through to
the end of the webpage. Following a 20-second wait to allow the
page to load fully, we gather the device’s network log. To ready the
system for the next crawl, we also purge the logs on the device,
terminate the app, and wait for 1 minute.

3.2.3 Limitations. Our approach enables us to conduct comprehen-
sive measurements for WebView-based IABs in real-world Android

apps. However, it is worth noting some important limitations to
our methodology.
• Our methodology inherently necessitates significant manual ef-
fort, thus constraining our scope to a limited number of apps. We
focus on the top 1K apps due to their wide usage and significant
influence on the user base. In all 10 apps where we discovered
WebView-based IABs, the creation of dummy accounts was a
prerequisite to accessing the app content. Automating account
creation is challenging to fully automate, given the broad diver-
sity in app UI designs and authentication workflows. For the
same reason, Android’s Monkey [50] - despite its efficacy in
other studies - may also not be effective in our context.

• During our manual analysis, we observed only 1 WebView-
based IAB per app. However, it is possible that there exist other
WebView-based IABs, embedded deeper within the app or acti-
vated by specific user behavior we did not replicate. While our
observations might not fully encapsulate all potential privacy-
invasive actions apps could be executing in the wild, they con-
tribute an initial, meaningful characterization of why apps may
still employ WebView-based IABs.

• Our crawl, although automated, was limited to the landing pages
of the top 100 sites. The restriction was due to rate-limiting we
experienced with the Facebook app, which restricted our ac-
count twice during the measurements, necessitating manual
intervention and the creation of new dummy accounts. Web-
Views might exhibit different behaviors on other web pages that
we did not crawl.

• During our crawls, we attempt to load the entire page by scrolling
down through the end of the page and allowing a 20-second
pause for resources to load. However, we did not emulate any
additional user behaviors. WebViews could exhibit additional
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behavior when the user interacts with the page (e.g., form fill-
ing). Our measurements are a first step towards understanding
the dynamics of WebView-based IABs in Android apps.

• The addJavascriptInterfacemethod of the WebView class fa-
cilitates an interface between the app native code and the JS
VirtualMachine inside theWebView. Ourmeasurements success-
fully record instances when such a bridge is exposed. However,
our methodology lacks the ability to monitor the communication
between the JS VM and the Java methods.
We would be happy to share the code and data used to derive

the results in this paper privately with researchers interested in
reproducing and extending our work.

4 Findings
In this section, we examine the data from our measurements de-
scribed in Section 3, aiming to understand the diverse ways that
web content is embedded in Android apps. We mainly investigate
the different use cases for which apps use WebViews and CTs. Con-
sidering the security, privacy, and performance issues related to
WebViews, we hypothesize that WebViews should only be used in
situations where CTs are insufficient – specifically, in cases where
the app needs to interact with the web content, such as in a hybrid
app. Furthermore, we explore the use cases where CTs could offer
better security and privacy protection than WebViews. We also
identify the apps that use WebViews to display IABs and analyze
the reasons and implications of this choice, particularly if it exposes
users to any security or privacy risks.

4.1 App Use of WebViews vs. CTs
In Section 3.1, we describe our method for analyzing the usage of
WebViews and CTs in the 146.5K most popular apps using static
analysis techniques. Our analysis reveals that 55.7% of the apps
use WebViews, 20% incorporate CTs, and 15% make use of both.
Cumulatively, we detected 125 SDKs using WebViews, 45 SDKs
using CTs, and 34 SDKs using both. The popular SDKs we identified
are used in approximately 67% of the apps integrating WebViews,
96% of the apps adopting CTs, and 76% of the apps utilizing both.
These statistics are summarized in Table 7. It is worth noting that
an app could be making use of more than one SDK, and it could also
have multiple instances of WebViews or CTs, some of which might
not be facilitated through the top SDKs. We take a holistic approach
to examining the use cases of WebViews and CTs through prevalent
SDKs as it allows us to identify patterns and extract insights.

We analyzed the use cases of WebViews and CTs in different app
categories, as shown in Figure 3. We found that WebViews were
mainly used for advertising purposes, with 46 SDKs supporting this
use case in about 39K apps. In contrast, CTs were predominantly
used for social media integration, with 6 SDKs enabling this use case
in nearly 23.8K apps. We observed that gaming apps (Puzzle, Simu-
lation, Action, and Arcade) frequently used CT-based social media
SDKs, while education apps used a lower proportion of WebView-
based Ad SDKs (44%) and a higher proportion of WebView-based
Payment SDKs (∼16.2%). We summarize the statistics for use of
WebViews and CTs in SDKs in Table 3, and statistics for the top
SDKs using WebViews and CTs in each categories in Table 4 and

Dataset Total
#apps

#apps using
top SDKs

Apps using WebViews 81,720 54,833
loadUrl 77,930 50,984

addJavascriptInterface 36,899 23,087
loadDataWithBaseURL 35,680 27,474
evaluateJavascript 26,891 18,716

removeJavascriptInterface 19,684 15,034
loadData 8,275 918
postUrl 5,028 2,678

Apps using CTs 29,130 27,891
Apps using both

WebViews and CTs 21,938 16,810

Table 7: Statistics of the apps using WebViews and CTs. For
the apps using WebViews, we consider the usage of WebView
APImethods that can be used to load andmodify (by injecting
JS) the web content requested by the user.

Table 5 respectively. Next, we will comprehensively discuss each
individual SDK use case to acquire an exhaustive understanding.
4.1.1 Advertising (Ads). In-app Ads are a major source of revenue
for free Android apps and are essential to the mobile app economy.
These ads are usually displayed in banner or interstitial formats,
showcasing rich media, such as HTML5 content, or interactive ads,
which are often streamed directly from the internet [37]. Google’s
Mobile Ads SDK empowers app developers to monetize their app
content by showing Google’s third-party ads adjacent to it. At the
time of our study in 2023, the SDK primarily utilized WebViews,
while supporting CustomTabs minimally [22]. However, starting
March 2024, the SDK has released support for monetization and anti-
fraud protections when implemented via CTs (in Beta) [36], which
indicates a positive shift towards increased CT adoption. Similar
to Google Ads, there are several other ad networks implementing
mobile ad SDKs, many of which have been studied by previous
work [41, 47, 71, 77, 86].

Notwithstanding the benign nature of most ads served by these
networks, numerous instances exist of malicious ads exploiting We-
bViews’ capabilities. Liu et al. discovered instances where popular
mobile ad networks manipulated WebViews to present deceptive
click ads, execute malevolent JavaScript code on the device (such
as cryptojacking), redirect users to harmful websites, and deceive
users into downloading malicious apps [71]. Browsers, which CTs
can utilize, are constantly evolving to incorporate robust defenses
against such web threats. For instance, features such as Google’s
Safe Browsing offer real-time threat intelligence [58], which could
potentially decrease users’ exposure to harmful content. Since Web-
Views are customizable, Ad SDKs can choose to disable SafeBrows-
ing, whereas Ad SDKs using CTs would be subject to SafeBrowsing
unless the user has explicitly disabled it in their browser. Research
conducted by Son et al. has highlighted instances where malicious
mobile ads have exploited the access granted by WebViews to ex-
tract sensitive information from the device’s external storage, and
in certain cases, even read the user’s local files [86]. Furthermore,
there have been proposals to enforce stricter separation of privi-
leges between the ad SDK environment and the host app [77, 85].
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(a) For apps which use WebViews via SDKs.
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(b) For apps which use CTs via SDKs.

Figure 3: Distribution of use-cases (SDKs) per app category for the top-10 app categories using WebViews and CTs respectively.

Android’s CTs practically implements those goals by securely seg-
regating the execution context of the mobile ad from the host app.

Nevertheless, in our analyses, we found that the usage of CTs
by Ad SDKs is minimal. Only 3 Ad SDKs were observed using CTs
in ∼2K apps, all of which also utilized WebViews. As seen in Fig-
ure 4, more than 45% of apps displaying Ads via WebViews expose
a JS Bridge to the WebView using the addJavascriptInterface
method, while more than 30% apps inject JS via the evaluateJava-
script method. This exposes an attack surface that might not
always be necessary to the intended functionality. As shown in
Table 4, the prevalent practice among Ad SDKs is still to use Web-
Views, with 46 SDKs implemented in ∼40K apps.

Takeaway: Ad SDKs should consider implementing CTs
where possible, and app developers should carefully weigh
the functionality offered by WebView-based Ad SDKs against
the attack surface they expose. Our measurements show that
ad networks primarily rely on WebViews, which have previ-
ously been shown to be exploited by malicious ads, and CTs
offer a promising replacement.

4.1.2 Engagement. App developers frequently employ engagement
measurement or analytics SDKs to determine which content is most
engaging, intriguing, or valuable to the user. Our data indicate that
∼21K apps use a WebView via such an SDK. The Open Measure-
ment (OM) SDK is the most prevalently used, found in an estimated
∼11.3K apps. The OM SDK facilitates third-party access to engage-
ment measurement data. Its primary use is to measure and verify
ad performance [68]. This involves checking whether an ad was
visible, the duration of its visibility, its compliance with the set
performance metrics, and whether it engaged in legitimate interac-
tions as opposed to fraudulent views. Our manual analysis verifies
that the OM SDK is predominantly used to support the ad net-
works AdColony and Ogury, which are found in ∼10.6K and ∼1.4K
apps respectively, for performance measurement. We did not detect
Engagement or Measurement SDKs using CTs. Even though CTs
natively measure similar user engagement signals [51], we regard
the use of SDKs to measure user engagement as a legitimate use

case for WebViews as they are currently more capable of providing
custom measurements.

4.1.3 Development Tools. We label SDKs which provide a set of
software development tools and libraries to help streamline the
process of creating apps as ‘Development Tools’ (Dev Tools). These
SDKs enable developers to cost-efficiently build high-quality apps.
For instance, Google’s Flutter is a cross-platform framework that
enables developers to build apps compatible with both Android and
iOS using a single codebase [17].

In our measurements, ∼7K apps utilize WebView components
provided by such Dev Tool SDKs. Specifically, we found ∼5.5K apps
leveraging url_launcher, a Flutter plugin used by apps to open a
URL in a WebView [33]. Interestingly, about ∼2K apps make use of
‘InAppWebView’, an actively maintained third-party Flutter plugin
used to embed WebView-based IABs in apps [18]. This plugin,
which has earned over 2.6K stars on GitHub, boasts functionality
for visiting third-party web content in an IAB, while also offering
the ability to inject JS code into the WebView-based IAB. We found
a limited number of 172 apps using CTs via such SDKs. Notably
among them, ‘android-customtabs’ is an SDK developed to default
apps to WebViews if no browser on the user’s device supports
CTs [55]. As the adoption of CTs increases, we believe that support
for Dev Tools SDKs using CTs will also grow. Our discussion of
the security and privacy implications of Dev Tools SDKs utilizing
either WebViews or CTs is limited, as their actual use case depends
on the app developers incorporating them – they alone specifically
do not constitute a use case.

4.1.4 Payments. Payment processing SDKs offer APIs, UI compo-
nents, and other tools that make it easier to integrate payment
processing into an app. They can be used by e-commerce apps,
either directly (i.e., selling products on a store) or indirectly (i.e.,
displaying ads with buy buttons next to other content) – or by
freemium apps that generate revenue from in-app purchases of
premium features. Mahmud et al.’s security analysis of Android
Payment SDKs uncovered 26 SDKs that used WebViews to enable
payments functionality such as checkout [73]. They reported that
none of the SDKs configured WebViews securely enough to comply
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with the OWASP Mobile Application Security Verification Stan-
dard [56]. In particular, 20 of those SDKs breached the PLAT4 plat-
form requirement by exposing sensitive payment data (e.g., credit
card numbers) from the WebView to the app. As seen in Figure 4,
our measurements too indicate that 48.5% apps using WebViews for
payments expose a JS Bridge to the WebView. Plaid Link, a financial
services SDK that enables app users to connect their bank accounts,
addressed these issues by switching to CTs [5]. They emphasized
that besides the interception of sensitive credentials, the absence
of security UI built into browsers (e.g., SSL verification icon) could
allow a malicious app phishing the the user’s credentials.
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Figure 4: Heatmap of the distribution of WebView API
method calls made by apps via SDKs.

However, our own analysis showed that WebViews remain the
prevailing choice for Payment SDKs. We identified their use in
∼3.2K apps, facilitated by 15 distinct Payment SDKs. The most
prominent SDKs that utilize WebViews include Stripe (∼1.1K apps),
RazorPay (484 apps), and PayTM (400 apps), all of which do so
to facilitate checkouts. CTs, on the other hand, were found in 6
SDKs and were implemented by a mere 208 apps. Juspay (77 apps)
and Ticketmaster Checkout (47 apps) - SDKs utilizing CTs, both
also facilitate checkouts. Juspay’s documentation outlines their use
of CTs to enable payments via Amazon Pay [63]. Intriguingly, we
observed that 5 out of the 6 SDKs supporting CTs also support
WebViews. We hypothesize that this is because these SDKs default
to WebViews when a browser with CT support is not available.

Takeaway: Payment providers should use CTs instead of
WebViews for integrating payment processing in their SDKs,
as CTs provide more secure and user-friendly payment expe-
riences. We find that most payment SDKs still use WebViews,
which can leak sensitive payment data or expose users to
phishing attacks.

4.1.5 User Support. User support SDKs allow developers to offer
customer service options within their app, rather than directing
users to call or email. We found that ∼1.7K apps used WebViews to
enable in-app customer service. Of these, ∼85% relied on Zendesk
and Freshcat SDKs to provide live chat support. This is a suitable
use case for WebViews, as the customer service web component

may need to access information from the app. For example, if a
user requests support for an order they made, the customer service
web component may need to retrieve order status details from the
app. This is supported by our analysis of WebView APIs by User
Support SDKs. In particular, as seen in Figure 4, all apps using
WebViews for user support load local data into the WebView us-
ing the loadDataWithBaseURL method, while only 45.9% apps use
loadUrl. Not surprisingly, we did not find any apps that used CTs
for in-app customer service.

4.1.6 Social. Social Media SDKs enable developers to access social
media platforms’ functionalities such as authentication, sharing,
and posting. We analyzed 6 SDKs that use CTs and 10 SDKs that
use WebViews, primarily to enable authentication. We found that
∼23.8K apps use CTs, while only ∼1.7K apps useWebViews. Among
the apps that use CTs, ∼98% of them rely on Facebook’s SDK, which
deprecated WebViews in October 2021 due to an increase in phish-
ing attempts via WebViews [7]. When users visit Facebook’s site
via a WebView, Facebook shows a “Log in Disabled” error, as shown
in Figure 5. With CTs, users can stay logged in to Facebook across
sessions, which increases conversion rates for apps authenticating
via Facebook. Similarly, NAVER, a South Korean online service,
has also deprecated WebViews in favor of CTs for OAuth autho-
rization [27]. We identified 406 apps that use WebViews and 156
apps that use CTs via NAVER’s SDK. Using CTs for authorization
requests is also in line with the best practices set out in the IETF
RFC 8252 for ‘OAuth 2.0 for Native Apps’ [48].

Figure 5: Facebook does not allow its users to authenticate
on its website if Facebook’s site is visited via a WebView [6].

However, not all social media SDKs have adopted CTs for authen-
tication yet. For example, the SDK for VK, a Russian social media
platform, uses WebViews and is used by 456 apps to authenticate
via VK. Kakao’s SDK, another South Korean platform, also uses
WebViews in 347 apps for OAuth. Additionally, 54 apps use CTs via
Kakao’s utilities SDK, but their purpose is unclear.
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Takeaway: Social media SDKs should prefer CTs, especially
for authentication. Widely-used SDKs such as Facebook and
NAVER have already switched to CTs as it provides better
usable security, however there still exist SDKs such as VK and
Kakao which use WebViews.

4.1.7 Utility. We define ‘Utility’ SDKs as those that integrate use-
ful features and utilities from other online services. We measured 4
Utility SDKs that use WebViews and 2 that use CTs in our study.
For example, NAVER Maps SDK, which is used by 130 apps, pro-
vides map-related functionality to apps. Ticketmaster’s SDK allows
app developers to access Ticketmaster features such as ticketing
and booking management. It uses both WebViews and CTs for
authentication and checkout processes. We also detected 16 apps
that use CTs through the MyChart SDK, an online service that
enables patients to schedule appointments and access their medical
records. We argue that WebViews are appropriate for utilities such
as Maps, where they can leverage the capabilities of WebViews, but
CTs are preferable for utilities such as MyChart, where sensitive
information is involved.

4.1.8 Authentication. Authentication or identity SDKs help devel-
opers to add authentication and authorization features with identity
providers (IDPs). They offer methods and classes to perform tasks
such as signing in, signing up, requesting permissions, verifying
credentials, and managing sessions. The threats discussed in Sec-
tion 4.1.6 for social media SDKs also apply to these SDKs. Authen-
tication SDKs should avoid using WebViews because they handle
sensitive information such as credentials, which can be compro-
mised. User experience (UX) would also improve with CTs, as the
users’ active sessions will persist, and they can also use password
managers without having to manually enter credentials. Moreover,
WebAuthn, an upcoming web standard for secure authentication
via FIDO2-based security keys or passkeys, is supported in CTs, but
not in WebViews [8].

We measured 7 identity SDKs that use WebViews in our study.
They include Gigya (120 apps), a customer identity and access
management platform used by SAP, NAVER corporate identity SDK
(90 apps), and Amazon’s IDP (37 apps). However, a vast majority of
apps (∼7.8K) used CTs for authentication. Among them, ∼97% of
the apps used Google Firebase’s Authentication SDK, which allows
apps to authenticate into custom IDPs and perform reCAPTCHA
checks, among other functionality [4].

Takeaway: IDPs should prefer using CTs in their SDKs to
protect sensitive information and improve the user experience
(via password managers and passkeys). Popular SDKs, such
as Google Firebase, use CTs, while some others, such as Gigya
and Amazon, still use WebViews.

4.1.9 Hybrid Functionality. Hybrid Functionality refers to the abil-
ity to combine web technologies (HTML, CSS, and JS) with native
features of the device in an app. As such, hybrid apps are an ideal
use-case for WebViews. Our measurements also find apps that use
both WebViews and CTs to create hybrid gaming (Baby Panda
World, Cube Storm) and news reading (Scripps News) apps.

Recommendations:
• Not all third-party web content requires delivery via CTs.
SDK developers should carefully consider the nuances we
discuss prior to making the transition. SDKs that facilitate
engagement measurement, developer tools, user support,
utility, and hybrid functionalities may not necessarily ben-
efit from the transition to CTs, as they utilize WebView
functionality legitimately.

• For use-cases that involve handling sensitive information,
we advise developers transition to CTs. Secure practices
implemented by SDKs can have an outsized positive impact
on the security and privacy of the app ecosystem, as several
thousand apps rely on them.

4.2 WebView-Based IABs
Android launches a Web URI Intent when a user clicks on an
HTTP(S) URL within an app. As per Android’s documentation,
the default browser handles the Web URI intent on Android 12 and
later versions, unless there is an app installed that can handle URLs
from that specific domain [35]. For instance, a maps.google.com
URL clicked from a social media app will launch the Google Maps
app if it is present. Otherwise, it will open in the default browser.
However, our semi-manual analysis of the top 1K apps, as detailed
in Section 3.2.1, revealed 11 popular social media apps that do not
launch aWeb URI intent, but instead, open the URL using an In-App
Browser (IAB). Among them, 10 apps used WebView-based IABs
to open HTTP(S) URLs. This implementation is problematic for
several reasons. First, WebViews are designed to display first-party
content, not third-party content. Second, WebViews are insecure
and vulnerable to various attacks, as discussed in Section 2. Third,
WebViews have extensive functionalities that can potentially be
abused by apps. In this section, we will examine our comprehensive
measurement datasets, as collected in Section 3.2.2, to investigate
whether such exploitation is occurring in practice.

We begin by examining App-WebView Interactions, which indi-
cate whether and how apps use privileged WebView API methods.
We observed that Snapchat, Twitter, and Reddit did not inject any JS
(via evaluateJavascript) or JS Bridge (via addJavascriptInte-
rface) into the WebView. Pinterest injected a JS Bridge into the
WebView-based IAB that was triggered when a URL in the DM
activity was clicked, but the name of the exposed Java class was
obfuscated, so we could not determine the purpose of the injection.
For the remaining 6 out of 10 apps, we detected both JS and JS Bridge
injections. Facebook and Instagram exhibited identical behavior, as
did Moj and Chingari. LinkedIn and Kik showed their own unique
behaviors. We explore these 4 behaviors in more depth by analyzing
our measurements collected in Section 3.2.2. To gain more insight
into the reasons behind a certain measurement, we also manually
investigated using Android logs collected by Logcat [34], and by
using the remote GUI debugging tool for Android [31]. They fa-
cilitated our manual investigation with fine-grained and real-time
information, that helped us comprehend activity on the device. We
summarize our findings of the inferred intents for all 10 apps in
Table 8.
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No. of
Downloads

App
Name

WebView
Via

Inferred Intent for Injected Content
HTML/JS Injected JS Bridge Injected

8.4B Facebook Post Returns DOM Tag Counts. Meta Checkout.
Returns simHash for page to detect cloaking[53]. AutoFillExtensions.

4.6B Instagram DM Logs performance metrics. Facebook Pay.
Insert FB Autofill SDK JS script.

2.34B Snapchat Story No injection. No injection.
1.38B Twitter DM No injection. No injection.
1.2B LinkedIn Post Calls to Cedexis traffic management API. No injection.
840M Pinterest DM No injection. (Obfuscated)
289M Moj Profile

Bio Insert and manage a video Ad via Google Ads SDK. Google Ads.97.5M Chingari
124M Reddit DM No injection. No injection.

176.5M Kik Insert ads via Ad Networks:
Google Ads, MoPub and InMobi. Google Ads.

Table 8: Summary of WebView injection and its inferred intents, as studied in the WebView-based IABs.To infer the intent, we
manually inspect the arguments the app passes to the WebView via WebView methods such as loadUrl, evaluateJavascript,
loadData and loadDataWithBaseURL, when we visit our controlled web page.

4.2.1 Facebook and Instagram. Facebook and Instagram are both
popular social media apps operated by Meta, with 8.4B+ and 4.6B+
downloads respectively.Wemanually analyzed the logcat logswhen
a user clicks on a URL in a Facebook news feed post or an Instagram
direct message. We found that no intent was raised and instead, a
WebView opened to load the URL. Using remote debugging, we dis-
covered that the URL was implemented as a button that triggered
the app logic to open the WebView. Our App-WebView interac-
tion measurements further revealed that the app injected several
JS scripts and JS Bridges into the web content after loading. The
code was well documented and we could infer the purpose of each
injection. The following JS injections were performed:

• A JS script that inserted a Facebook Autofill script element
into the page, as shown in Listing 1. We believe that the
script was used to populate merchant checkouts with user
information such as name, address, and phone number from
the user’s Facebook profile.

(function(d, s, id){
var sdkURL = "// connect.facebook.net/en_US/iab.
autofill.enhanced.js";
var js, fjs = d.getElementsByTagName(s)[0];
if (d.getElementById(id)) {

return;
}
js = d.createElement(s);
js.id = id;
js.src = sdkURL;
fjs.parentNode.insertBefore(js, fjs);

}(document , 'script ', 'instagram -autofill -sdk'));

Listing 1: JS executed by Facebook and Instagram’s WebView-
based IAB to embed a JS SDK that populates merchant
checkouts with user information from their Facebook
profile.

• A JS script that returned a frequency dictionary with the
DOM tag counts.

• A JS script that returned locality sensitive hashes for (i) text
and DOM elements, (ii) text elements, and (iii) DOM elements.

In-line comments indicated that this information was col-
lected to detect client-side cloaking based on Cloaker Catcher
by Duan et al. [53].

• A JS script that logged performance metrics to the console.
It recorded the time it took to load the DOM content and
whether the page was an Accelerated Mobile Pages (AMP)
supported page.

In the visit to our controlled web page via Facebook and Insta-
gram’s WebView-based IABs, we also recorded the methods of the
Document and Element Web APIs being called, as summarized in
Appendix Table 9. This confirmed that the injected JS code was not
just injected, but also executed.

Besides JS code, the WebViews also had access to JS bridges,
namely fbpayIAWBridge, metaCheckoutIAWBridge, and _Autofi-
llExtensions. We believe that the first two enable payments via
Facebook [24] and checkouts viaMeta [9], if the user visits a website
that supports these features (e.g., by clicking on an ad). The third
one provides the Java interface that the autofill JS code can use to
retrieve user information from their Facebook profile. The network
logs revealed that Facebook and Instagram’s WebViews used redi-
rectors hosted at lm.facebook.com/l.php and l.instagram.com
respectively. They passed the intended URL and a random identifier
to the redirector in the GET request, which could be exploited for
tracking the user [66] (a similar redirect via t.cowas also observed
for Twitter). In the crawl of the top 100 websites, the WebViews did
not make any network requests other than those to the intended
website and its resources.

4.2.2 LinkedIn. LinkedIn is a social network for professionals, and
its Android app has more than 1.2 billion downloads. It uses a
WebView-based IAB to display links found in their news feed posts.
Other than visiting the intended webpage, we found that the IAB
also loads resources from radar.cedexis .com and runs JS code
to interact with the Cedexis Radar API at cedexis-radar.net.
Cedexis Radar, currently part of Citrix’s NetScaler Intelligent Traf-
fic Management, aims to ‘collect network performance data to
enable smart routing decisions’ [30]. It offers its customers, such
as LinkedIn, access to a large set of network performance data
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(a) Distribution of number of unique endpoints contacted by
LinkedIn’s IAB. It most frequently contacts external trackers, such
as Cedexis (cedexis-radar.net) and LinkedIn’s own services, such as
CDN (licdn.com), ad engagement APIs (px.ads.linkedin.com) and per-
formance monitoring (perf.linkedin.com).
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(b) Distribution of number of unique endpoints contacted by Kik’s
IAB. It most frequently contacts external ad networks, such as MoPub
(ads.mopub.com) and InMobi (supply.inmobicdn.net), in addition to
CDNs such as Amazon CloudFront (cloudfront.net).

Figure 6: We crawl 100 top sites via WebView-based IABs of the 10 apps listed in Appendix Table 8, and show the distribution
of endpoints contacted specifically by an app’s WebView-based IAB. In this figure, we show the average number of distinct
endpoints of a certain kind (y-axis) contacted by the IABs of LinkedIn and Kik, when they access a certain kind of site (x-axis).

collected from real users worldwide, in return for conducting and
sharing network measurements from their own end-users. Radar’s
documentation states that it measures availability, response time,
and throughput across different Cloud and CDN providers on an
end-user’s device. Radar’s Android SDK called AndroidRadar, out-
lines how developers can integrate their network measurement
library into their app WebViews [13].

Figure 6a illustrates the distribution of distinct endpoints con-
tacted by LinkedIn’s IAB, per different types of websites crawled
via the IAB. These endpoints were specific to LinkedIn’s IAB and
were not contacted by any other app’s IAB. We classified the end-
point types using Symantec Sitereview [93]. We observed that for
websites with rich content, such as News, Entertainment, and Shop-
ping, LinkedIn’s IAB contacted more than 2 trackers on average
(e.g., Cedexis trackers), as well as its own services, such as CDN
(licdn.com), ad engagement APIs (px.ads.linkedin .com) and
performance monitoring (perf.linkedin.com). We observed that
the average number of endpoints contacted was smaller for Search
or Technology websites, presumably because they contained less
content to interact with. Our results broadly corroborate with the
functionality of Radar as described in its documentation.

4.2.3 Moj and Chingari. Moj and Chingari are short video-based
social media apps, developed by two different developers for the
Indian audience, and they had more than 289M and 97M down-
loads, respectively. We discovered that both apps exhibit identical
behavior in terms of WebView injections. The injected JS code was
highly obfuscated, making it difficult to understand its functional-
ity. However, we manually inspected the names of the JS Bridges
exposed and the variable names used by the JS code and inferred
that the injections aimed to insert and manage video ads via the
Google Ads SDK. Our inference was supported by the fact that
one of the JS bridges injected was named googleAdsJsInterface,

and the injections included JSON data fields with Ad specifications
of ads from doubleclick.net – which is known to serve Google
Ads [81]. Despite the numerous injections, we did not observe any
ads on our test page, nor did our server record any Web API usage.
Upon further inspection of the JSON objects containing the ad de-
tails for both Moj and Chingari, we observed that although they
had populated parameters about which ad to display and where
to fetch it from, the width and height were fixed to 0 – and a field
‘notVisibleReason’ was set to ‘noAdView’. Based on this, we believe
that the injected code did not execute to show any ad because there
was no compatible ad view on the page. If there were an ad view
on the page, the app’s injection could potentially help Google Ads
display an ad more relevant in the context of the app. However,
to understand ad injection, we are limited to measurements from
our controlled web page, as measurements from our crawl dataset
could be contaminated with activity from ad networks used by the
crawled web pages themselves.

4.2.4 Kik. Kik, an instant messaging application with 176.5M+
downloads, utilizes a WebView-based IAB to open URLs that users
open in private Direct Messaging windows. We discovered that
Kik’s IAB also injects the googleAdsJsInterface bridge that we
found injected in Moj and Chingari. However, the JS code injected
by Kik was different and markedly more obfuscated than Moj and
Chingari. Due to the complex nature of the JS code, we were unable
to parse the ad payload, even after manual inspection. Furthermore,
as highlighted in Appendix Table 9, our web server logged the
IAB’s use of only read-only Web APIs, indicating that there was
no actual modification to the DOM of our test page. However, our
network logs did highlight that the IAB communicated with ad
networks. For a more comprehensive understanding, we analyzed
the distribution of endpoints contacted by Kik’s IAB during our top
site crawl, as displayed in Figure 6b. The plot revealed that when
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visiting websites rich in content, Kik’s IAB communicates with, on
average, over 15 ad network endpoints. MoPub (ads.mopub.com)
and InMobi (supply.inmobicdn.net) are two prominent ad networks
contacted by the IAB. From these findings, we hypothesize that
the JS code injected by Kik communicates with a multitude of
ad networks, and could be selectively inserting ads, but its logic
framework remains unclear to us.

Takeaway: Popular apps are misusing WebViews to show
third-party web content within their app, while monitoring
and manipulating the web content without explicit consent
from the users.

5 Concluding Remarks
In this study, we conducted extensive measurements on popular
Android apps with the goal of providing novel insights into the
state of web security in mobile apps. Our large-scale investigation
illuminated the adoption rate of CTs, a secure and user-friendly
alternative to WebViews. Furthermore, our detailed examination
of WebView-based IABs in the top 1K apps, each downloaded at
least 86M times, revealed practices potentially harmful to the user’s
security and privacy.

We analyzed ∼146.5K apps, each boasting over 100K users, and
highlighted the diverse use cases of non-browser mobile apps pre-
sentingweb content viaWebViews and CTs.We contend that for use
cases like Authentication and Authorization, using WebViews vio-
lates the least privilege principle. CTs, with CustomTabsCallback
are well-privileged to handle such use cases, while WebViews with
functionality such as evaluateJavascript, are over-privileged.
Their privilege exposes the user’s credentials to potential abuse.
CTs provided by browsers such as Chrome not only bolster security,
but also enhance user experience through the shared state with
the user’s default browser, a consistent and secure UI, and faster
load times. Our study is a first step in quantifying the adoption of
CTs in widely used apps. Building upon previous work, we take
an evidence-based approach in highlighting the risks for SDKs per-
sisting in using WebViews. We note that many popular SDKs, such
as Facebook Login and Google Firebase, have already migrated to
CTs; however, a considerable number of extensively used SDKs
lag behind. We recognize SDKs that measure user engagement of
first-party web content, provide in-app support, and offer other
utilities as legitimate use cases of WebViews. Future research could
focus on adapting Ad SDKs, the most common WebView appli-
cation, to CTs, taking advantage of innovations like Partial CTs,
which enable developers to launch resizable inline CTs in response
to native ads, as showcased by Google in 2023 [29]. This would
mitigate the risk posed by WebViews, which has previously been
exploited by malicious ads to compromise the user’s security and
privacy. We note that secure practices implemented by SDKs can
have an outsized positive impact on the security and privacy of the
app ecosystem, as several thousand apps rely on them.

To further characterize the usage of WebViews to display third-
party content, our semi-manual analysis of the top 1K apps uncovers
11 apps that disguised URLs as buttons with hyperlink-like text.
These buttons, upon clicking launched an IAB, instead of raising

a Web URI intent. Typically, a Web URI intent is handled either
by an appropriate app or the default browser, however, these apps
force the URL to open within the app itself. A deeper probe re-
vealed a variety of unique behaviors. Apps such as Facebook and
Instagram used this method to facilitate payments and checkouts,
despite the potential for misuse by malicious websites to pilfer
personal user information. Other apps like Moj, Chingari, and Kik
did so for potential ad injection, while LinkedIn incorporated a
network measurement SDK to source performance metric data
from user devices. Despite the seemingly benign behaviors found
in WebView-based IABs, we suggest that the extensive attack sur-
face they expose renders the trade-off inadequate. Although some
apps offer an option to disable in-app browsers for privacy-focused
users [3], we recommend apps make it an opt-in feature and im-
plement IABs using CTs, for improved user safety. Alternatively,
websites can also take proactive steps to handle web sessions from
WebViews differently. Every request that comes from a WebView
has a X-Requested-With header field with the app’s APK name as
its value [79]. The steps could vary from showing the user a prompt
to inform and consent to the risks involved in performing an action
(such as logging in or making a transaction), to completely blocking
access to sessions from WebViews, as Facebook did [6]. Interest-
ingly, Facebook prevents its users from logging in on its website
via a WebView (as shown in Figure 5), but opens third-party links
in a WebView itself, ignoring the users’ security and privacy on
other websites.

Our community has consistently observed that adopting new, se-
cure technologies necessitates not only the education of developers
but also the alignment of incentives. We hope that our empirical
findings will contribute to achieving these objectives. Our research
lays the foundation for improving transparency regarding how mo-
bile apps display third-party web content. Future research could
consider including WebView usage for third-party content as a
metric in the ‘privacy nutrition labels’ as displayed on the app store.
Android could also explore measures such as Apple’s App Tracking
Transparency, which enables users to choose whether an app’s
WebView can track their activity across other companies’ websites
for the purposes of advertising or sharing with data brokers [14].
Although cross-party tracking on the web remains an arms race,
such measures enable users to make educated decisions about their
online safety [62], and incentivize the ecosystem of apps and SDKs
to adopt safer practices [65].
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A Appendix

App
Name

Web API used
Interface Method

Facebook

&

Instagram

Document

getElementById
createElement

querySelectorAll
getElementsByTagName

addEventListener
removeEventListener

Element
insertBefore
hasAttribute

getElementsByTagName
HTMLBodyElement insertBefore
HTMLCollection item

NodeList item
HTMLMetaElement getAttribute

Kik
HTMLDocument querySelectorAll

HTMLMetaElement getAttribute
Document querySelectorAll

Table 9: Web APIs accessed by apps, as recorded by our con-
trolled web page server.
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Figure 7: (L-R) Screenshots from a test in which the same page loaded in Custom Tabs (CT) within an app, Chrome, an external
browser, and a WebView within an app [2]. The CT was fastest at loading the page – twice as fast as a WebView.

B Ethics
In conducting our manual analysis of the top 1K apps, we ensured
that our experimentationmethodology did not induce a high load on
online services, as we manually navigated the apps and tested how
they implement IABs using only one benign URL. When carrying
out our automated crawls, we recognized the possibility that some
of the URLs could potentially contain sensitive or malicious content.

As a proactive measure to safeguard other users, we ensured that
none of the URLs were posted publicly, thereby eliminating any
potential harm to other users on the platform.

Following ethical research practices, we reported our findings
to Google’s Trust and Safety team via the Abuse Vulnerability
Reward Program’s responsible disclosure process, and are actively
participating in the discussion, as of September 2024.
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